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ABSTRACT

In this work, we theoretically study the properties of diatomic molecular systems, their dy-
namics, and the control thereof through the use of laser fields. We more specifically study three

compounds:

- HeH™, a species of great astrochemical importance which is thought to be the first molec-

ular species to have formed in the universe;

- CO?*, ametastable dication of particular interest in quantum control experiments due to
its long-lived lowest vibrational level;

— 41K87Rb, a polar molecule that can be formed at very low temperature and trapped, mak-

ing it a good candidate for quantum computing schemes.

First, we use ab initio methods to compute accurate potential energy curves for the lowest
singlet and triplet states of HeH* as well as the potential energy curves, transition dipole mo-
ments and nonadiabatic radial couplings of the ground 1T state of CO?>* and of its 11 lowest 32~
states.

In a second step, we use this ab initio data to compute the photodissociation and radiative
association cross sections for the @ and b 3+ states of HeH™, as well as the values of the corre-
sponding rate constants for astrophysical environments. The photodissociation cross sections
from the lowest vibrational level of CO?" are also determined.

Going one step further, we optimize laser control fields that drive the photodissociation
dynamics of HeH" and CO?* towards specific channels. We compare two field optimization
methods: a Mller operator-based Local Control approach and Optimal Control Theory. In both
cases, we add a constraint that minimizes the area of the optimized fields.

Finally, we focus on one of the potential applications of high-fidelity laser control: the use

of small molecular systems as quantum computers. We more specifically study the potential



implementation of both intra- and intermolecular logic gates on data encoded in hyperfine
states of trapped ultracold polar 'K8”Rb molecules, opening interesting perspectives in terms
of extensibility.
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ABSTRACT EN FRANCAIS

Dans cette thése, nous étudions théoriquement les propriétés de molécules diatomiques,
leur dynamique de réaction ainsi que le controle de cette dynamique a 'aide de champs laser.

Notre travail porte plus spécifiquement sur trois especes :

- HeH™, un composé-clé en astrochimie considéré comme la premiére espéce moléculaire

qui s’est formée dans l'univers ;

— CO?*, un dication métastable qui se préte bien a des expériences de contrdle quantique

en raison du relativement long temps de vie de son état vibrationnel le plus bas ;

- HK87Rb, une molécule polaire qui présente la particularité de pouvoir étre formée a trés
basse température et piégée, ce qui en fait un bon support physique potentiel pour la

réalisation d'un ordinateur quantique moléculaire.

Nous utilisons tout d’abord des méthodes de calcul ab initio afin d’obtenir les courbes
d’énergie potentielle des premiers états singulets et triplets de HeH" avec un haut de degré
de précision, ainsi que les courbes d’énergie potentielle, les moments dipolaires de transition et
les couplages non-adiabatiques radiaux de 1'état fondamental 3IT de CO?* et de ses 11 premiers
états 53X,

Ensuite, nous utilisons ces données ab initio pour calculer les sections efficaces de pho-
todissociation et d’association radiative des états a et b 3=+ de HeH™, ainsi que les constantes
cinétiques associées a ces processus dans les conditions rencontrées dans des environnements
astrophysiques. Les sections efficaces de photodissociation du niveau vibrationnel le plus bas
de CO?* sont également calculées.

Nous allons ensuite un cran plus loin en optimisant des champs laser qui guident la dy-

namique de photodissociation de HeH* et CO?>* vers des canaux de dissociation spécifiques.



Nous comparons deux méthodes d’optimisation de ces champs: une approche de controle lo-
cal basée sur les opérateurs de Moller et la théorie du controle optimal. Dans le deux cas, nous
incluons une contrainte qui minimise l’aire des champs.

Enfin, nous nous concentrons sur 'une des applications possibles du contréle laser a
haute fidélité : l'utilisation de petits systemes moléculaires comme ordinateurs quantiques.
Nous étudions plus spécifiquement 'implémentation possible d’opérations logiques intra- et
intermoléculaires sur des données encodées dans des états hyperfins de molécules de *'K®’Rb

piégées, ce qui ouvre des perspectives intéressantes en terme d’extensibilité.

Note : conformément a la loi francaise, un résumé en francais plus détaillé de cette these est

donné en annexe, page 195.

Mots-clés

Chimie computationnelle ; Calcul ab initio ; Dynamique quantique ; Photodissociation ; As-
sociation Radiative ; Section efficace ; Contréle quantique ; Controle local ; Contréle optimal ;

Ordinateur quantique.
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CONCERNING THE STRUCTURE OF THIS
THESIS

With tens of thousands of PhD students graduating each year throughout the world', it
should come as no surprise that there are many different ways of writing a PhD thesis, that
vary from country to country, from university to university, from laboratory to laboratory — and
even from one PhD advisor to the next within a given laboratory.

In the spirit of the earlier theses conducted at the Service de Chimie Quantique et Photo-
physique (CQP) of the Université Libre de Bruxelles, this thesis does not assume that its readers
have extensive prior knowledge of physical chemistry and explains many notions that more
knowledgeable readers are certainly familiar with.

Despite realizing my thesis under a joint supervision between two different countries, I
chose to write my thesis in this way for several reasons. First of all, I see the task of explaining my
research from the ground-up as an interesting writing exercise and as a fitting end to four years
of research. Secondly, I remember feeling very thankful to earlier PhD students, back when I
first started my Master Thesis, for having taken the time to write detailed and well-referenced
introductions to their works. Additionally, I suspect such introductions may prove more useful
than usual since this thesis contains contributions to different domains of physical chemistry:
ab initio calculations, field-free molecular dynamics, laser control and quantum computing.
Although readers familiar with computational chemistry will likely yawn at the perspective of
reading about the Hartree-Fock method for the umpteenth time, I suspect many of them might
appreciate a short introduction to quantum control and quantum computing if they have no
prior experience in these fields.

However, I realize this way of writing may not be ideal for time-pressed readers, who might

TSee for example: D. Cyranoski, N. Gilbert, H. Ledford, A. Nayar, and M. Yahia. Education: The PhD factory.
Nature, 472:276-279, 2010. doi:10.1038/472276a.


http://dx.doi.org/10.1038/472276a

want to skip straight to the parts presenting the original developments of this work and the
results of our calculations. For their convenience, each chapter of this thesis starts with a short
introduction detailing its structure and mentioning the number of the pages where the results
sections begin.

Additionally, the PDF version of this thesis is hypertext-enabled: text written in blue may
be clicked to reach the corresponding part of this work or the corresponding external webpage
(as illustrated for example by the footnote on the previous page). A direct link to references
through the DOI system is given whenever possible to facilitate the consultation of the works

given in reference of this thesis.

Good reading to all!

Stéphane Vranckx
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UNITS USED IN THIS WORK

Unless otherwise explicitly noted, all results shown in this thesis are expressed in atomic

units (a.u.):

Table 1: Conversion factors from atomic to S.I. units [1].

Dimension Atomic unit definition Value in S.I. units
Mass Me- 9.1096 x 10731 kg
Electrical Charge e 1.6022x 10719 C
4megh?
Length ap = 0 5 5.2918x 10711 m
Me- €
Energy By =M 43597 x 10718 ]
h (4meoh)? '
m? ed
Electric field = 5.1422 x 10! v.m~!
. h -17
Time — 2.4189 x 10 S
Ep
Dipole moment e ayp 8.4784x1073° Cm

In this Table, m,- is the rest mass of the electron, e is its charge and 7 = h/27 is the reduced
Planck constant. The atomic unit of energy is also called hartree, a term which we will use
instead of “a.u.” to avoid possible confusion with other dimensions. For the same reason, “ay”

will be used to refer to atomic units of length.
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Since e, m,-, 1 and 47¢g are all equal to 1 in atomic units, these factors will often be omitted
in this work for the sake of readability.

Energies will occasionally be expressed in electronvolt (eV) or cm™!:

Table 2: Energy conversion factors [1].

hartree eV cm™! ]
hartree 1 27.2114 219474.63  4.3597x 10718
eV 3.6749x 1072 1 8065.73  1.6021x 10719
cm™! | 4.5563x107% 1.2398x107* 1 1.9863 x 10723
] 22937 x10'7  6.2418x10'®  5.0344 x 10%? 1




CHAPTER

INTRODUCTION

1.1 Context of this work

In this thesis, we theoretically study the properties of small molecular systems and their

control using laser fields.

This work stands at the crossroads of three scientific domains. The first is of course Chem-
istry, as we study the properties and dynamical behaviour of molecules. However, it could also
be argued to belong to Physics, as we study very small molecular systems and their interaction
with electromagnetic radiation: the fine line between physical chemistry and chemical physics
tends to become blurred at this scale. Last but not least, our work also relates to Computer sci-
ence as it not only uses computational techniques to describe the static and dynamic properties

of small molecules but also explores the potential role of such systems in quantum computing.

Both computational chemistry and quantum computing are currently booming fields, as
illustrated by the attribution of the 2012 Nobel Prize in Physics to Serge Haroche and David
Wineland “for ground-breaking experimental methods that enable measuring and manipula-
tion of individual quantum systems”, as well as of the 2013 Nobel Prize in Chemistry to Martin
Karplus, Michael Levitt and Arieh Warshell “for the development of multiscale models for com-

plex chemical systems”.

This thesis was realized under a joint supervision between the Service de Chimie Quan-
tique et Photophysique (CQP) of the Université Libre de Bruxelles and the Laboratoire de Chimie
Physique (LCP) of the Université Paris-Sud. It partly expands on previous works realized in both
laboratories: the in-depth study of the hydrohelium cation started by Jéréme Loreau [2-5], as

well as the dynamical and quantum control simulations of the LCP’s ThéoSim group [6-10].
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Chapter 1. Introduction

1.2 Structure of this work

This thesis is split into seven parts:

— The rest of this introductory chapter will be composed of a discussion of the reasons that
led us to study certain diatomic molecules in particular, followed by a short introduction

to the theoretical description of molecular systems.

— In the second chapter (p. 45), we will present some of the quantum chemical methods
used to describe molecular properties for fixed geometries of the nuclei and the results
we obtained therewith for the dications HeH* and CO?*.

— The third chapter (p. 77) will be dedicated to the theoretical description of nuclear dynam-
ics and its application to the computation of photodissociation and radiative association

cross sections for these two molecules.

— In the fourth chapter (p. 113), we will go one step further in the description of the nu-
clear dynamics by not only including the effect of an external electric field on the nuclear
dynamics, but also by showing how this field can be optimized to guide the dynamics
towards a desired outcome. We more precisely optimize laser fields that guide the pho-
todissociation of HeH* and CO?* towards specific channels and introduce a constraint

that minimizes the area of the fields.

— The fifth chapter (p. 157) will focus on one of the potential applications of these quantum
control methods: the use of molecular systems as quantum computers. The results of our
simulations of the implementation of the Grover quantum search algorithm on trapped

41K87Rb molecules will be detailed.

— Finally, the sixth and last chapter (p. 187) will expose the conclusions of our work and its

perspectives.

— Additional details as well as a summary of this work in French are given in the appendix
(p. 191).

1.3 Selection of the molecular systems

1.3.1 Why diatomic molecules?

Since its initial formulation in 1965, Moore’s empirical law [11] describing the evolution as
a function of time of the number of components per integrated circuit (at fixed cost) has thus
far been relatively well verified: as it is often paraphrased, the computing power available for
a given cost has been following an exponential augmentation since 1959 at least, roughly dou-
bling every two year. This steady rise in computing power has progressively been opening new
ventures of study for computational chemistry, allowing for an increasingly accurate descrip-

tion of bigger and bigger systems. However, although very impressive calculations have been
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realized for large molecules, it is well-known that the complexity of such calculations and the
computation time they require increase exponentially with the number of degrees of freedom of
the considered system. Moreover, the accurate description of even small molecular systems re-
mains challenging, depending on the level of accuracy one wishes to reach. Indeed, the accurate
description of a system as small as a single, non-hydrogenoid isolated atom with spectroscopic
accuracy is very far from trivial, as illustrated by the still ongoing efforts of the theoretical atomic
physics community (see for example Refs. [12,13] for recent works on atoms with few electrons
or few valence electrons).

In this thesis, we work on the smallest possible molecular systems: diatomic molecules. The
choice of such small molecular system allows us to push the accuracy of the theoretical descrip-
tion further than for larger systems, which is essential in quantum control using laser fields, as
the properties of the optimized fields are highly sensitive to the ab initio data. In a recent re-
view article, Brif, Chakrabarti and Rabitz go as far as stating that “an objective assessment is that
models used for polyatomic molecules in control computations are currently too simplified and
computational techniques are inadequate for the true levels of complexity, resulting in theoretical
designs that are not directly applicable to control experiments that work with real systems” [14]
(the current state of the art in quantum control and the experimental predictability of pulses
optimized theoretically will be further discussed in the fourth chapter).

In this work, we more specifically study three diatomic molecules, chosen on the basis of
their properties and of their importance in astrophysical environments, laboratory plasmas and
quantum control experiments: the hydrohelium cation HeH", the carbon monoxide dication
CO?* and the polar alkali molecule *'K8"Rb.

1.3.2 The hydrohelium cation HeH*

The hydrohelium cation HeH*, also called helium hydride ion and hydrohelium(1+), is a
species of interest because of its relative simplicity and its role in plasmas, both in the context
of astrochemistry and of laboratory plasmas.

From a theoretical point of view, the simplicity of HeH* makes it attractive for accurate ab
initio calculations: it is only constituted of two nuclei and two electrons and, in its ground state,
itis the simplest closed-shell heteronuclear ion. This led to numerous computational chemistry
studies of the properties of its ground state in the last decades, starting with the computation
of its potential energy curve by Anex [15] in 1963, later expanded upon by Kotos and Peek [16]
as well as Bishop and Cheung [17]. This culminated with the computation of its pure vibra-
tional spectrum by Stanke et al. in 2006, which shows exceptional agreement with experimental
measurements [18].

The excited states of HeH* have also been the subject of several publications. In the 1970s,
Green et al. published an ab initio study of the singlet and triplet Z, IT and A excited states of
HeH" up to n = 3" [19-22]. Loreau et al. recently expanded this work by considering excited

TFor convenience, we will often characterize the electronic states of HeH* by the highest value of the principal
quantum number 7 of the corresponding atomic fragments.
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states up to n =4 and internuclear distances between the H and He nuclei up to R = 200 atomic
units [2]. Unless otherwise noted, all ab initio data for HeH™ used in this work comes from the
calculations of Loreau et al., as detailed in Chapter 2.

The theoretical study of HeH* by the Service de Chimie Quantique et Photophysique and
the Laboratoire de Chimie Physique was in part motivated by its potential role in the diagnostic
of laboratory plasmas, such as those that will be created in the ITER' nuclear fusion reactor.
The spectroscopic study of the emission lines from impurity ions such as helium indeed al-
lows insight into the properties of such plasmas, but the interpretation of this data requires a
good understanding of the interactions between the impurities and the main constituents of
the plasmas. Charge transfer reactions between H and He* are of particular interest in that re-
spect [23, 24], leading to an in-depth dynamical study by Loreau et al. of the charge transfer
between He* (1s) and H between 0.1 and 100 eV, using a quasimolecular approach based on the
ab initio data calculated for HeH" [4].

HeH" is also a species of interest in astrochemistry: not only is it constituted of the two
most abundant atoms in the universe, hydrogen and helium, it is also believed to be the first

molecular ion to have formed in the universe, by radiative association of H* and He [25-27]:

He+H' — HeH" + hv. (1.1)

Moreover, HeH™ is predicted to be formed in certain regions of space with high enough
fractional abundances to be observable [28], for example in certain nebulae [29] such as
NGC7027 [25, 30], in supernovee [31], and in metal-poor stars [32] (helium-rich white dwarfs
in particular [33]). Every attempt of extra-terrestrial observation of this cation so far has how-
ever proven inconclusive at best [34, 35], which may in part be due to the fact that its J = 1-0
rotational line coincides with a rotational line of CH [36]. The recent announcement of the first
detection of a noble gas molecular ion in space, 38ArH* [37], makes the apparent absence of
HeH™ all the more surprising.

Although HeH" has been observed in laboratory plasmas as early as 1925 [38] and has been
the subject of numerous experimental studies [39-42], it continues to elude astronomical obser-
vations even today. Such experimental studies have however brought attention to the properties
ofits a 3X* state [39,40], which is metastable as its radiative decay toward the ground !Z* state
is spin-forbidden. Its radiative lifetime was computed by Loreau et al. and found to be as high
as 149 s in its lowest rovibrational level, suggesting HeH™ might be detectable in this state in
astrophysical environments where the collision rate is low [3].

In this thesis, we first pursue the work started by Loreau et al. by investigating the astro-
chemistry of HeH™ in its first two triplet states. We compute the cross sections characterizing
their destruction by photodissociation and their formation by radiative association, with a par-
ticular focus on the methodological aspects of the extraction of both cross sections from a single

dynamical calculation. We then theoretically optimize laser pulses that guide the photodissoci-

T International Thermonuclear Experimental Reactor.
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ation of HeH" towards specific channels, expanding on the work started by Bomble et al. [43]:
despite the deceptive apparent simplicity of HeH*, its dynamics is nontrivial due to the large
role played by nonadiabatic couplings, making it a good test case for quantum control. The
fields are optimized using Local Control Theory and Optimal Control Theory, with a new con-

straint that minimizes the total field area.

1.3.3 The carbon monoxide dication CO%**

The CO?* dication, or COyyj, is another diatomic ion of interest in several fields of research. It
also bears historical importance in the study of dication properties as it was the first molecular
dication to ever be discovered, in 1930 [44] .

At first glance, the metastability of diatomic dications AB?* can seem surprising. Yet as early
as 1933, a few years only after the first detection of CO?>*, quantum chemistry pioneer Linus
Pauling published the first theoretical prediction of a metastable dication, He%* [46], showing
the characteristic potential energy curve that all “kinetically stable”* dications share (1.1). At
large internuclear distances, Coulombic repulsion dominates, but at short distances, chemical
bonding actually occurs, stabilizing the doubly charged molecular species. The net result of the
two phenomena is a (usually shallow) potential energy well situated above the dissociation limit
into AT + Bt [48].

Since the laws of quantum mechanics allow tunneling through potential energy barriers,
such states are not stable and so-called “kinetically-stable” molecular dications spontaneously
dissociate into their constitutive fragments. Their lifetime however strongly varies from one
species to another and from one rovibrational level to another: the energy barrier is smaller
for excited rovibrational levels, leading to shorter lifetimes. In the case of CO?*, the lifetime
of all vibrational levels of the ground X 3I1 state was found to be shorter than a microsecond,
except one: the v = 0 level, which has an estimated lifetime of several seconds at least [49]. This
characteristic makes it a very interesting species for laser control experiments, as it means that
CO?* can be obtained in a vibrationally pure state instead of a mixture of several vibrational
states at once.

This constitutes the main reason of our choice of CO?* as a test system for our quantum
control simulations, as the group of experimenters of X. Urbain at the Université catholique de
Louvain, who previously studied the formation of Cco2* by electron impact on CO* [50], has
expressed a strong interest in performing laser control experiments on CO?* in the near future.

Moreover, dications are thought to play an important role in various astrochemical me-
dia. The carbon dioxide dication CO%*, which has a measured lifetime of 4.2 seconds [51], has

for example been predicted to be one of the constituents of the high atmosphere of Mars and

fJ.J. Thomson's 1921 Rays of Positive Electricity is sometimes also cited as the first published detection of a dica-
tion. However, although Thomson does mention doubly charged compounds as a possible source of some of its
experimental data, he does not appear to unequivocally detect and identify one [45].

*Dications AB®* can be divided in two categories: kinetically stable dications whose lowest state is metastable
and dissociates into At + BT, as shown in Fig. 1.1, and thermodynamically stable dications, whose lowest state
is bound and dissociates into A2* + B (see Ref. [47] for a comparison). CO%* belongs to the former category.
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Figure 1.1: The potential energy curve of the Hngr dication as published in Pauling’s 1933 pa-
per [46]. He comments, “(...) at large distances, the two He" ions repel each other with the force
e?/r?; at about 1.3 A, the resonance interaction of the electrons becomes important, causing the
force to become attractive at about 1.1 A, and leading to the formation of a molecule (...)".

Venus [52,53]. Other dications of carbon-containing species, such as fullerenes and polycyclic
aromatic hydrocarbon [54], have been predicted to be present in the interstellar environment.

Additionally, neutral carbon monoxide CO is the most abundant interstellar molecule after
H, [55]. It is often used as a reference to estimate H, abundances on the basis of presumed
CO/H, abundance ratios: even at low temperature, it can be detected thanks to its J = 1-0
emission line, contrarily to molecules such as H, that have no permanent dipole moment and
therefore no rotational spectrum. Its monocation CO™ is also known to be present in planetary
atmospheres (not only that of Earth’s but also those of Mars, Venus, ...), stellar atmospheres,
comet tails, planetary nebulee (such as NGC 7027) and in interstellar space [56]. It is therefore
thought that the dication CO?* is very likely to be also present in space in sufficient quantities
to allow its remote detection [57].

From a quantum chemist’s point of view, diatomic dications in general are interesting due
to their high density of electronic states dissociating into either two singly-charged ionic frag-
ments or an atomic dication and a neutral atom, leading to many avoided and/or unavoided
crossing [58]. Like HeH*, CO?* therefore features important nonadiabatic couplings, making
its dynamic nontrivial — with the added peculiarity that its ground electronic state is metastable.
The simulation of its photodissociation dynamics and of its control are therefore of interest.

Although several experimental [59-66] and theoretical [67-69] studies of CO2* have been
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realized, none have focused on its photodissociation in highly excited 2~ channels. In this
work, we compute the potential energy curves, nonadiabatic couplings and permanent dipole
moment of the X 3IT and of the 11 first 32~ channel of CO?*, as well as the corresponding tran-
sition dipole moments (the majority of these states had never been described theoretically be-
fore). This ab initio data is then used to compute the X 3I1 —3 £~ photodissociation cross sec-
tions of CO?* for the first time as well as laser fields that enhance its dissociation in the C** +
O fragments. As in the case of HeH*, we use both Local Control and Optimal Control Theory to

achieve this goal, with emphasis on the determination of fields that have an area equal to zero.

1.3.4 The diatomic polar molecule *'K8"Rb

Among the many molecular systems considered as potential candidates for quantum com-
puting (see Chapter 5), trapped polar molecules stand among the most promising candi-
dates [70] because of their long decoherence time and their strong dipole-dipole interaction.
Moreover, ultracold K8 Rb molecules can be obtained in their absolute lowest energy level
and trapped [71-74].

The reasoning behind the choice of ultracold diatomic polar molecules and of KRb in par-
ticular as a support for quantum information will be further detailed in Chapter 5, after we have
explained the basic principles of quantum computing and the essential properties a physical

system has to possess to be used to encode and process quantum information.

The main properties of the three systems studied in this work are summarized in Table 1.1.

Table 1.1: Main properties of the systems studied in this work, with masses expressed in dalton
(1 Da=1.66 x 10727 kg).

Nuclei Electrons Mass Reduced mass

‘He'H* 2 2 5 -
5
192
12¢16p2+ 2 12 28 ==
28
3567
41K87RDb 2 56 128 -
128

Note: The rest of this chapter is dedicated to a short introduction to the theoretical descrip-
tion of diatomic molecular systems. Readers already familiar with the subject may want to skip
either to the beginning of Chapter 2 (p. 45) or straight to the results of our calculations, in Sec-
tion 2.3 (p. 53).
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1.4 Theoretical description of molecular systems

Because of their small size, molecules are quantum systems. Their behavior is therefore gov-
erned by the central equation of quantum mechanics, the time-dependent Schridinger equa-
tion:

ih%‘{’(r, H=HY(,1). (1.2)

It contains the two physical quantities that are essential to the theoretical description of

quantum systems:

1. the wavefunction ¥ (r, t), a function from which properties of the system such as the elec-

tron probability density can be obtained;

2. the Hamiltonian operator H, the mathematical operator whose eigenvalue is the energy

of the system.

It is worth remarking that the Schrédinger equation is an ordinary and linear first-order dif-
ferential equation in ¢, which means that if the value of the wavefunction ¥ (r, ty) is known at
some time fy, its values at all other times can be determined [75]. Furthermore, if the Hamilto-
nian of the system is time-independent, the Schrédinger equation admits a series of solutions
VY, (r, ) corresponding to stationary states, whose properties such as their energy E,, are inde-
pendent of time. Since the spatial variables r and the time variable ¢ are independent from each

other, the wavefunction can be written as:

Y, (r, 1) = gu(Dyy@). (1.3)

Inserting this in the time-independent Schrodinger equation (Eq. 1.2) leads to two very im-

portant results. The first is the time-independent Schridinger equation:

Hy,(x) = Eyyy,(r). (1.4)

The second is the differential equation:

., 0 :
lhaﬁbn(t) = Epn(D), (1.5)

whose solution gives the time-dependence of the stationary states:

Pn(t) = e Entlh (1.6)

The wavefunction of stationary states can thus be written as

W(r, 1) = e Ent My (). 1.7

Although this wavefunction obviously depends on ¢, it is important to note that the proper-

ties that derive from it, such as the energy or the probability density, are independent of time.
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1.4.1 Dynamics of molecular systems

How, then, can the time evolution of a quantum system be described? Let us now consider

a wavefunction that is composed of a linear superposition of stationary states:

W, 1) =Y cp e By, (o). (1.8)

This kind of wavefunction, called a wavepacket, has explicit time-dependence. The prop-
agation of wavepackets in time and the extraction of chemically relevant data from their be-
haviour will be discussed in Chapter 3 (p. 77). Let us just state for now that studying the time
evolution of wavepackets can give us a very intuitive view of the dynamics of quantum systems.

It is however important to note that the same information can be obtained from the evo-
lution of the time-dependent wavepacket W ,(r,t) and from solving the time-independent
Schrodinger equation, provided the Hamiltonian is independent of time. Two formalisms thus
exist to describe dynamical processes: the time-dependent formalism, where the time evolu-
tion of the system is described explicitly by simulating the evolution of its wavepacket in time
to obtain information about its dynamics; and the time-independent formalism, where the
same information is obtained by solving the time-independent Schrodinger equation through
coupled-channel or algebraic methods (see Ref. [76] for an overview of time-dependent and
time-independent methods).

Historically, dynamical problems were first described using the time-independent formal-
ism, as it tends to require less computational resources. However, both methods have advan-
tages and drawbacks; the best method to use therefore depends on the kind of system studied.
In this work, we use the time-dependent formalism as it allows an intuitive and detailed look
into the dynamics and can be used even in cases where the Hamiltonian is time-dependent,
such as when we consider molecules exposed to laser fields. It is therefore necessary to use a
time-dependent approach when optimizing laser control fields to guide the dynamics of molec-

ular systems, as discussed in Chapters 4 and 5.

1.4.2 Hamiltonian operator for molecular systems

The theoretical description of a molecule first requires finding the expression of its Hamil-
tonian H. Its general form is the sum of the kinetic and potential energy operators for the con-

sidered system:

H=T+V (1.9)

Since a molecule is composed of electrons and nuclei, its Hamiltonian can be further de-

composed into the following terms:

H=TN+7¢+ VNN yeNy yee (1.10)

where TN and T¢€ are the kinetic energy of the nuclei (N) and electrons (e) while VNN yeN and
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V®€ represent the Coulomb interaction potential terms: the electronic repulsion between the
nuclei, the attraction between the electrons and the nuclei, and the repulsion between the elec-
trons, respectively.

For a molecule composed of N nuclei with coordinates Rj,Ry,..Ry and masses
M, M>,...Mpy as well as n electrons with coordinates ry,ry, ...r,;, the general form of the Hamil-

tonian is thus:

N 2 K2 N n 7. 762
ey gy Mgy § _AA
imi2Mi 7 S2Zme 5 50 AmeolR — Ry

2 n 2

e

N n n
—ZZ +yY Y —— (1.11)

4n€0|Rl vl i1 5 4meglr; — rjl
where V? is the Laplacian V2 = 622 + 6‘;2 + a = (with x, y and z being either the Cartesian coordi-

nates r of the electrons or R of the nuclei). For convenience, we will use atomic units throughout
this work (see page 23) so that i, m.-, 4mey and e are all strictly equal to 1. Let us also introduce
the variables r;; to represent the distances between two particles i and j (be them electrons or

nuclei):

i=1

N n
DN
i=1j=1

1, 1
2MiVRi_i:Zi§V Z Z

i=1j=i+1 rl]

n
Yy — T (1.12)
i+ U

ri ] 1j=

The Schrédinger equation for molecules can thus be written as

(TN + 7€+ VN L yeN | yeeyp(r R) = E¥(r,R), (1.13)

where ¥ (r,R) is the total molecular wavefunction. Computational chemists usually split the
molecular Hamiltonian into two parts: the nuclear kinetic energy TY on one side and the elec-

VNN

tronic Hamiltonian H® as well as the nuclear Coulombic repulsion on the other:

H= TN + yWgd (1.14)
— —
Reaction dynamics Electronic structure

with

H = 7€ + VN 4 yee, (1.15)

Note that two conventions coexist in the definition of the electronic Hamiltonian H¢, with
some authors choosing to include the nuclear repulsion potential VNN, although it is a purely
“nuclear” term that does not depend on the coordinates of the electrons (compare for example
two widely-used reference books, Physics of Atoms and Molecules [75] by Bransden and Joachain
with Jensen’s Introduction to Computational Chemistry [77]). This is however a simple matter

of convention and, as we will see in Section 2.1, it makes a lot of sense to regroup VNN with the
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1.4. Theoretical description of molecular systems

electronic terms, as each electron can be thought of as evolving in an electric field generated by

the other electrons and the nuclei.

1.4.3 The Born-Oppenheimer approximation

The first step in most theoretical descriptions of molecular systems is the Born
Oppenheimer-Approximation [78,79]. Since the electrons are thousands of times lighter than
the nuclei (mp+ =~ 1836 me-), it seems reasonable to assume that they move much faster than
the nuclei and thus adjust instantaneously to any change in their positions.

Under this assumption, the theoretical description of a molecular system can be split into

two successive steps:
1) the resolution of the electronic part of the problem for fixed geometries of the nuclei;
2) the description of the nuclear motion based on these results.

Let us first write the Schrodinger equation for the electrons only, by neglecting the kinetic

energy of the nuclei, TN:

where ‘P?l adia i the adiabatic electronic wavefunction of the electronic state j and E;?l adia ()
is its adiabatic potential energy. Note that the index j we use here is meant to designate each
electronic state unequivocally, it can be seen as shorthand for a set of indexes characterizing the
spatial symmetry and the spin of the state considered, as will be introduced in Section 1.6.

By solving Eq. 1.16 for different fixed geometries of the nuclei (i.e. different values of coor-
dinates R), the potential energy (hyper)surfaces of the considered electronic state are obtained'.
In the case of diatomic molecules, only one coordinate needs to be considered: the internuclear
distance R between the two nuclei, which means the electronic energy of each state is charac-
terized by a one-dimensional potential energy curve. These energy (hyper)surfaces or curves
can be seen as an effective potential created by both the electrons and the nuclei, in which the
nuclei move according to the time-dependent nuclear Schrédinger equation.

E®! is however not the only energy term that must be taken into account: contributions

arising from the nuclear part of the total Schrodinger equation must also be included:

E=E%+EN, (1.17)

The adiabatic electronic wavefunctions ‘I’s?l adia(; R) are orthonormal and form a complete

set’. We can thus express the total molecular wavefunction ¥ (r, R) as:

TNote that in this context, R and r have very different status: the coordinates of the nuclei R are treated as param-
eters while the coordinates of the electrons r are treated as variables.

*For the sake of readability, we will usually omit the “adia” index in the rest of this work.
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YR =) PR v R), (1.18)
j

where ‘I’]N (R) are the nuclear wavefunctions and only depend on the coordinates R of the nuclei.

This separation allows the resolution of the electronic and nuclear motions separately.

1.4.3.1 Nuclear motion

Let us focus for a moment on the motion of the nuclei and on the associated nuclear kinetic
energy operator TN. The nuclear motion of a molecule composed of N nuclei possesses 3N

degrees of freedom, that can be divided in three categories:

— 3translational degrees of freedom, which correspond to concerted translations of the nu-

clei in space along the x, y and z axes of the Cartesian laboratory-fixed frame.

— 2 or 3 rotational degrees of freedom (depending on whether the molecule is linear or not),
which correspond to the rotation of the molecule around the x, y (and z for non-linear

molecule) axes of the laboratory frame.

— 3N -5 or 3N — 6 vibrational degrees of freedom, which correspond to variations of the

internuclear distance(s), i.e. internal motions of the molecule.

Studying the translational motion of the nuclei is of little interest to quantum chemists, who
therefore use a coordinate system centered on the center of mass of the molecule to separate
the global movements of its nuclei from their relative motion.

Moreover, it is convenient to use internal coordinates such as bond lengths, angles between
two bonds and torsion angles to describe the internal motions of the nuclei instead of the posi-
tions R; of each individual nucleus. In the case of diatomic molecules, which are only composed
of two nuclei, a single scalar coordinate R = |R; — Ry| is sufficient to describe the molecular ge-
ometry unequivocally. The developments that follow are given for diatomic molecules, which
have two rotational degrees of freedom and a single vibrational degree of freedom.

The nuclear kinetic energy operator itself can be rewritten as the sum of two contributions,
by separating the Laplacian of the nuclear coordinates V%{i (expressed in spherical coordinates)
into a term that only depends on the internuclear distance R and a term that contains the an-

gular dependence:
TN — TVlb + Trot

1 6 1,
.
2u0R?  2uR?

(1.19)

fNote however that this leads to the appearance of a mass polarization term H™P in the Hamiltonian, which arises
from the fact that the internal motion and the center of mass motion of a system of more than two particles
cannot be rigorously separated. As in most quantum chemistry calculations [77], this term is neglected in the
present work.
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1.4. Theoretical description of molecular systems

where u = (M; M)/ (M) + M>) is the reduced mass of the molecule and N is its nuclear angular
momentum. The first term corresponds to vibrational motions and depends on the internuclear
distance R only, while the second corresponds to the rotation of the molecule (i.e. a rigid rotor,
assuming the internuclear distance R is independent of the rotational motion) and contains the

angular dependence of the nuclear motion.

Correspondingly, the nuclear wavefunction WN can also be split into a vibrational and a

rotational part:

PN (R) = pVib yrot, (1.20)

Note that Eq. 1.19 only shows the nuclear kinetic operator. To solve the vibrational and rota-
tional Schédinger equations and obtain the energy EV'P and E™! of the vibrational and rotational
levels, the Hamiltonian operator must not only contain the corresponding kinetic operator but
also the potential V, obtained by solving the electronic Schrédinger equation.

For example, assuming a harmonic potential, the vibrational equation leads to the following

eigenvalues:

EVibzhv(v+%), (1.21)
where v is the vibrational quantum number. We will discuss the resolution of the vibrational
equation for more realistic potentials further in Section 2.2 (p. 53), after having solved the elec-
tronic Schrodinger equation to obtain the electronic potential as a function of R.

Similarly, the rotational part of the problem has very simple eigenvalues if a simplified
model is used. If we assume that the molecule behaves as a rigid rotor, i.e. that the internu-
clear distance R is independent of the rotational motion, the rotational kinetic operator can be

rewritten as [75]:

rot _ 1 N2
2uR?

= B(R) N?, (1.22)

where B(R) is called the rotational constant of the diatomic molecule!. The eigenvalues of
H™' = T™! 1V are the rotational energies E™'. If the molecule behaves as a rigid rotor, they

take the form:

E°'=BJ(J+1), (1.23)

where J is the rotational quantum number. If the molecule cannot be approximated by a rigid

rotor, additional terms need to be added to take into account the centrifugal distortion.

fNote that spectroscopists usually use a slightly different definition of the rotational constant B, that is indepen-
dent of the internuclear distance R: B = 1/2pR§, where Re is the equilibrium distance.
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In the end, the energy of a molecule in the Born-Oppenheimer approximation is therefore

composed of the following sum of terms:

E = E¢ 4+ pvib 4 prot (1.24)

to which additional terms linked to the nuclear spins may be added. Although they are often
neglected in quantum chemistry because of their small magnitude compared to the others, we
will look into them in Chapter 5, when implementing quantum algorithms in the hyperfine

levels of molecules exposed to electric and magnetic fields.

1.4.3.2 Diabatic representation

The Born-Oppenheimer approximation led us to neglect the effect of the nuclear kinetic
operator TN on the electronic wavefunction ¥ j(r,R). Now that we have seen the expression of
the operator, let us see what this approximation exactly entails.

Let us first insert the expression of the total wavefunction in terms of electronic and nuclear

wavefunctions (Eq. 1.18) into the total Schrddinger equation (Eq. 1.13):
(7 + 1 VNN S Wi ) Wi R = B Y WY R) WS R (), (1.25)
j j
Multiplying by ‘le (r,R) on the left and integrating leads to:

; (W R | T+ Y VN | el R)) WY R) = B ;\PJN(R) (vaR | vwRr). (126

Since the electronic wavefunctions \le are orthonormal and since H® + VN does not act

on the nuclear wavefunction, this can be rewritten as:

> (iR | T v R Wi R + BV ®R) = BV . (1.27)
J
1 (0> N
We have seen in Eq. 1.19 that TN = ~3 (W - ﬁ) Inserting this in Eq. 1.27, developing
J

the second derivative in R then reuniting the terms in ‘Iﬂ,j (R) and ‘PI;I(R) leads to:

1 62 el N 1 0 1 rot N
5+ B BV ‘g(kafa—R Gy HgfYm =0, a2
where:
1
rot _ el 2 el
SR (viwr | N | v R),
el 0 el

1 02
e
ij = <\Pk(l‘,R) ’ W

el
‘I—’j (r,R)>.
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1.4. Theoretical description of molecular systems

These elements respectively constitute the nonadiabatic rotational coupling matrix H™"
(i.e. the matrix of the rotational Hamiltonian from Eq. 1.22), the first-order nonadiabatic radial
coupling matrix F and the second order nonadiabatic radial coupling matrix G. Some useful
properties of the radial couplings are demonstrated in the Appendix on page 191, such as the

fact that the matrices F and G are linked by the relation:

0
_ T2
G=F+ . (1.30)

The elements of matrix G can thus easily be deduced from those of matrix F.

In the Born-Oppenheimer approximation, all the non-diagonal terms kj of the matrices
H™' F and G are neglected, leading to a set of uncoupled equations (one for each state). Simi-

larly, their diagonal elements j j are usually neglected. This leads to the expression:

1 ¢
( —— +E3 YN R) = E¥Y(R), (1.31)

 2u0R?

which, if the rotational part of the kinetic energy Hamiltonian T™ is neglected, can also be writ-

ten as:

(™ + B W) = E¥Y . (1.32)

The Born-Oppenheimer approximation must however be used with caution: the neglect of
the couplings can lead to significant errors in the theoretical description of molecules. It can
be shown that the radial coupling between two states k and j is inversely proportional to the

difference between their energies, as demonstrated in the Appendix on page 192:

<\Pil aiRI_Iel \I/§l>
Fyj= T : (1.33)
J

The Born-Oppenheimer approximation is therefore invalid in situations where states have
similar energies. For a diatomic molecule, this corresponds to an avoided crossing: two states
of the same symmetry cannot have the same energy simultaneously, which implies that their
potential energy curves cannot cross each other. Note that, although avoided crossings lead to
significant radial couplings, non-negligible coupling terms also arise in other situations.

It is therefore important to go beyond the Born-Oppenheimer approximation by taking the
nonadiabatic couplings into account, as they significantly affect the behaviour of molecular
systems [80]. However, the presence of intense and narrow nonadiabatic couplings such as
those associated to nonadiabatic crossing poses difficulties in the numerical resolution of the

coupled equations 1.28.

These difficulties can be circumvented by defining a diabatic basis of representation such
that the nonadiabatic coupling elements F are strictly equal to zero, thus diagonalizing TN.

This is achieved by looking for a matrix D such that:
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0
—D+F-D=0. 1.34
3R (1.34)

This transformation matrix allows the re-expression of the adiabatic potential energy curves
into the diabatic representation. They indeed correspond to the diagonal elements of the elec-
tronic Hamiltonian matrix #¢':

Ezl =Vir = <\I,zl fHel

v, (1.35)

Using the matrix D found in Eq. 1.34, H®! can be obtained in the diabatic basis through the
following transformation:

Hel dia _ D—l Hel adia D. (1.36)

While ¢ was diagonal in the adiabatic picture, this transformation leads to the appearance
of non-diagonal elements V]?ﬁa, called the diabatic couplings. Choosing to work in a diabatic
basis in order to diagonalize TN thus comes at a price: the electronic Hamiltonian H®' ceases to
be diagonal.

The rotational couplings 7' 4@ can similarly be obtained in the diabatic basis through the

relation:

qqrotdia _ =1 g rot . (1.37)

The diabatic rotational couplings matrix ™% is then added to the diabatic electronic
Hamiltonian matrix H*' 912, A new adiabatic basis that takes the rotation couplings into account
is then obtained by re-diagonalizing the H®'.

Note that Eq. 1.34 can admit multiple solutions. The standard diabatic representation is the
one which coincides with the adiabatic representation for large internuclear distance [80], thus
ensuring that the passage to the diabatic representation does not affect the energy of the atomic

fragments. This is achieved by imposing the initial condition:

lim D=1, (1.38)

R— +o0
where 7 is the identity matrix, with elements I;; = 0; ;. Note that, once again, the development
shown here is only valid for diatomic molecules and that more complex schemes are required
for polyatomic molecules, as illustrated for example by the works of Prof. Baer on the subject
[81-83].
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1.5. Cross sections and rate constants

1.5 Cross sections and rate constants

In Chapter 3 of this work, we use time-dependent calculations to compute two physical
quantities that characterize the dynamics of chemical reactions: rate constants and cross sec-

tions.

In chemistry, reactions are usually characterized by rate constants k(T), which provide a di-
rect link between the rate of a reaction and the concentrations of the compounds it involves, as
a function of temperature. Although rate constants are very useful, they only characterize reac-
tions on a macroscopic scale: they result from a very large number of microscopic events with
a wide distribution of parameters such as reactant collision geometry, initial internal excitation

level and relative kinetic energy.

To describe how reactions occur at the scale of individual molecules, a microscopic param-
eter is required: the reaction cross section o [75]. This physical quantity represents the reaction
probability as a function of energy (typically, the relative kinetic energy between the two collid-
ing reactants, or the energy of the incident photon in photoinitiated reactions) and as a function
of other possible parameters, such as the collision angles 6 and ¢ in the case of differential cross
sections. The term “cross section” derives from the classical picture, where it represents the char-
acteristic surface of the collision between two reactants in a hard sphere model. It is therefore

expressed in units of area (typically cm? or Bohr radius squared aé).

Knowing the value of the cross section for a given reaction as a function of the energy, as well
as the energy distribution corresponding to the physical conditions in which the reaction oc-
curs, the correspond rate constant can easily be determined, as will be shown in Section 3.2.1.2
and 3.2.2.2 for photodissociation and radiative association reactions (p. 85 and p. 90, respec-

tively).

1.6 Symmetry properties of heteronuclear diatomic molecules

Group theory plays a crucial role in the theoretical description of molecules, as many of
their properties are intrinsically linked to their symmetry. For example, whether an electronic
dipole transition between two electronic states is permitted or forbidden depends on their spa-

tial symmetry and their spin.

Heteronuclear diatomic molecules have a cylindrical symmetry and therefore belong to the
Coop point group. Their symmetry operations include the identity, the rotation by any arbitrary
angle around the internuclear axis z and the infinity of symmetry planes which include that

axis. The corresponding character table is shown in Table 1.2.

Given the cylindrical symmetry of diatomic molecules (and linear molecules in general),
their electronic Hamiltonian H®' commutes with the z-component of the orbital angular mo-

mentum operator, L,, but not with I? L, and Ly. The electronic wavefunctions wel are thus
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Table 1.2: Character table of the Cy,, point group of symmetry.

Coov E 2 Coolgp) 000y
A =3X* 1 1 1
Ay=2" 1 1 -1
E,=1I 2 2 cos(¢) 0
Ex=A 2 2 cos(2¢) 0
Es=® 2 2 cos(3¢) 0

eigenfunctions of both H® and L, [75]:

L9 = M, hwe, m;=0,+1,+2,+3,...
=+A B A=0,1,2,3,... (1.39)

The states can therefore be classified according to the corresponding value of A = |m;|:

Avalue 0 1 2 3
(I
State designation X II A @

Since all reflections with respect to a plane containing the internuclear axis z are part of
the symmetry operations of linear molecules, their Hamiltonian also commutes with the corre-
sponding o, operators. For example, the reflexion o, along the (xz) plane leaves the energy

unchanged, but transforms L into —L,, since its effect amounts to y — —y and since:

L ——ih(xi— i) (1.40)
o oy Vox '

When applied to a wavefunction associated to an eigenvalue A # 0, the o, operator there-
fore transforms it into a wavefunction with eigenvalue — A while leaving the energy unchanged,

meaning that all states with A > 0 are doubly degenerate’.

TStrictly speaking, the interaction between the electronic and rotational motions lifts that degeneracy. This phe-
nomenon, called A-doubling, will not be taken into account in this work [75].
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1.6. Symmetry of diatomic molecules

> states, for which A = 0, are however not degenerate. Since a plane reflexion is an involu-
tion (i.e. an operation that is its own inverse), applying it twice in a row on a wavefunction must
yield back the original wavefunction, meaning that the eigenvalue of 02 is 1 and that the eigen-
value of 0, can only be either +1 or —1. In the first case, the reflexion leaves the wavefunction
unchanged and the state is denoted =* while in the second case, the reflexion changes the sign
of the wavefunction and the state is denoted X~

Note that the MOLPRO ab initio software package [84], which we use in this work to solve the
time-independent Schrédinger equation, only works in Abelian point groups of symmetry, i.e.
groups that respect the commutative law for all operations (such as Cy, Cy, C;, Cs, Coy, Copy, D2,
and D,p). For molecules belonging to point groups with degenerate symmetry, MOLPRO in-
stead uses an Abelian subgroup, such as C,, in the case of heteronuclear diatomic molecules.
The character table of the C,, point group is reproduced in Table 1.3 and the correlation be-

tween the Cy,, and the Cy, point groups is shown in Table 1.4.

Table 1.3: Character table of the C,, point group of symmetry.

Caoy E C2 oy(x2) oy(yz)
A 1 1 1 1
Ay 1 1 -1 -1
By 1 -1 1 -1
B, 1 -1 -1 1

Coov Coy
A =x* = A
Ay =3~ = Ay
E =11 — B; +By
Ex=A — AL+ Ay
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In addition to their spatial symmetry, the electronic states of heteronuclear diatomic
molecules (and of molecular systems in general) are also characterized by their spin. The elec-
tronic wavefunction indeed commutes with the spin operator S? and the operator S, associated
to its projection on the z axis, with eigenvalues S(S+ 1)h? and him respectively. If the spin-orbit
coupling is neglected, each state has a spin degeneracy of 2S + 1, called the spin multiplicity,

which is commonly used to characterize molecular states according to the following conven-

tion:
S value 0 1/2 1 3/2
mg values 0 +1/2 0,+1 +1/2,+3/2
0 ) 0 0
Spin multiplicity 1 2 3 4

State designation Singlet Doublet Triplet Quadruplet

The complete nomenclature of molecular electronic state is based on their spin and spatial
symmetry according to the convention >5*! A, which is usually combined with the spectroscopic
notation for molecular states. This (originally empirical) approach to state designation assigns
an additional letter to each state, with X being the ground state and A, B, C, ... being the excited
states of the same spin multiplicity, from lowest to highest energy. States with a different spin
multiplicity than that of the ground state are denoted with lowercase letters a, b, c, ... in order of

ascending energy.

1.6.1 Selection rules for diatomic molecules

The spin multiplicity and spatial symmetry of electronic states lead to the existence of se-
lection rules: transitions between electronic states may be “forbidden” due to their respective
symmetry and that of the operator involved in the transition.

In this work, we will more precisely focus on the electric dipolar selection rules for diatomic
molecules. Knowing the symmetry properties of the transition dipole moment operator, the

following selection rules can be inferred [85]:

— AS =0, meaning for example that singlet — singlet or triplet — triplet transitions are per-
mitted, but that singlet < triplet transitions are forbidden. Note that this rule breaks down

if spin-orbit interactions are non-negligible.

- Among X states, only 2* < X% and £~ < X transitions are allowed while X~ — X* transi-

tions are forbidden.

— AA = 0 for transitions caused by p, (the component of y along the internuclear axis z),
while AA = +1 for py and yy. £ < X transitions are therefore permitted through the .
component (“parallel” transitions) and X < IT are permitted through py, uy, (“perpendic-
ular” transitions), while transitions like ¥ — A are strictly forbidden under the dipolar

selection rules.
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2

AB INITIO CALCULATIONS

We have seen in Section 1.4.3 (p. 35) that the first step in the theoretical description of molec-
ular systems is the resolution of the electronic Schrédinger equation for fixed geometries of the
nuclei. In this chapter, we will present some of the theoretical methods that have been devel-
oped in this aim and the results we obtained therewith for the molecular cations HeH* and
CO?*.

This chapter is organized as follows: we first give a general theoretical introduction on the
ab initio methods used in this work. We then expose:

— A short overview of the results of the calculations of Loreau et al. for the '=*, 3=* and 311
states of HeH* (Section 2.3, p. 53), followed by the results of our additional calculations
forits X 12*, a32* and b 3X™ states (Section 2.3.2, p. 59).

— The result of our calculations for the X 311 state of CO?* and for its thirteen first 3~ states,

most of which had never been described in literature before (Section 2.4, p. 63).

All ab initio results presented in this work were obtained using the MOLPRO Quantum
Chemistry Package designed and maintained by H.-J. Werner and P. J. Knowles [84], and were
performed on the HYDRA ULB/VUB computing cluster [86].

2.1 Abinitio methods

Various methods have been developed throughout the years to solve the electronic
Schrodinger equation. In this work, we focus on ab initio (“from first principles”) methods,
which only rely on the basic principles and laws of quantum mechanics to describe atoms and

molecules, without requiring any empirical parameter. Given the history of chemistry as an
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experimental and empirical science, the fact that many properties of molecules can be com-
puted without requiring any knowledge besides that of the laws of quantum mechanics deserves
recognition.

Of course, such computations are far from trivial. Ab initio approaches require more com-
putational resources than semi-empirical approaches, which use parameters based on exper-
imental data to speed up calculations. Since the Schrodinger equation cannot be solved ex-
actly for most molecular systems, approximations have to be used even in ab initio methods,
with high-level ab initio approaches requiring less approximations but more computational re-
sources [87].

Note that unless otherwise explicitly specified, all wavefunctions ¥ shown in this chapter
are electronic wavefunctions W€ (r,R) and that the ¢ indices are omitted for the sake of read-
ability.

2.1.1 Hartree-Fock

Historically, the first ab initio method used in computational chemistry is the Hartree-Fock
method. Even today, it is often used as a starting point for more accurate calculations.

The Hartree-Fock approach is based on the variational method, which relies on the fact that,
for a system described by a Hamiltonian H, the exact wavefunction ¥ yields the exact energy
Eexact, While any other wavefunction ¥ yields a higher energy Eg:

(Y| H|W) (V| H|W)

Eg=~—"t— > Fpp= " 2.1
<\P|\P> = exact (“P|“P> ( )

This means that if we take a random trial wavefunction ¥ which depends on a series of pa-
rameters a, 3,7, ..., the correct wavefunction can be gradually approximated by adjusting these
parameters so as to minimize Eg. With the right choice of trial wavefunction and parameters,
the exact wavefunction can be approached.

How should the wavefunction be defined to achieve this? First and foremost, in order to
correctly describe the quantum nature of the electrons, the electronic wavefunction ¥ must
respect Fermi-Dirac statistics, which entails it has to be antisymmetric under the exchange of
two electrons (i.e. exchanging two electrons flips the sign of the wavefunction) and that two
electrons must differ by at least one of their quantum number (i.e. respect the “Pauli exclusion
principle”).

These two conditions are conveniently met if the wavefunction is expressed as a Slater de-

terminant:
XaX1) xpx1) - xn(x1)
W ) 1 [Xxa®X2) xp&X2) -+ xn(x2) 2.2)
X1,X2,..X,) = —— , .
” Vil S
XaXn) xp&Xn) - xnXn)

or if it is expressed as a linear combination of such determinants, called a configuration state
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function (CSF). In this expression, the coordinate x; represents the position r; and the spin og;
of electron i, and each function y(r;,0;) or simply y(i) is a spin-orbital, i.e. a one-electron
wavefunction for electron i that not only characterizes its spatial distribution, but also whether

its spin z-projection is up or down. Each spin-orbital yx(r;,0;) can thus be expressed as the

product of a spatial orbital ¢4 (r;) and of a spin function a (for o; = 1/2) or  (for ; = —1/2):
Xk(@) = Pi(r) a, or (2.3)
= ¢r(r) B

Both the spatial orbitals and the spin-orbitals form orthonormal sets:

(x| x1) =06k (2.4)

Let us now look at the electronic Hamiltonian. As we have seen in Egs. 1.12 and 1.15, for a

molecular system containing 7 electrons and N nuclei, H® is composed of the following terms:

Hel:Te+VeN+Vee
1 N n 7: n n 1
SRPIEL DI Vb D WD Dits 25)
i=1

i=1j=1Tij  i=1j=i+17ij

The first two terms can easily be expressed as a sum of monoelectronic Hamiltonians h(i),
each composed of the kinetic energy of an individual electron and of the potential terms arising
from its interaction with all N nuclei:

hi)=--V: -3y = (2.6)
2 j=1Tij

Upon integration with the full wavefunction, each h; term will yield the corresponding mo-

noelectronic energy €; for electron i:

i = (XaWxp@) Xk @t n () | G | xaWxp@)er k(D)o n (1))
= (xe@ | R | xe@) (@ | 1) (x22) | 12@)) .. (xn (1) | xn(n))
= (xe() | hG) | xi (D). 2.7)

Of course, most molecules contain more than one electron — which significantly compli-
cates matters as the third term of Eq. 2.5, the electron-electron repulsion, explicitly involves the
coordinates r; and r; of two electrons. The Hartree-Fock method relies on the mean-field ap-
proximation, in which each electron moves in an average field generated by all other electrons.

For a given electron i, the operator v(i) associated to this mean field takes the following form:

v(i) =) Ur@) - Ke(D)), (2.8)
k

where Ji (i) is the Coulomb operator and K (i) is the exchange operator. The Coulomb operator
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J (i) represents the repulsion potential felt by the electron i due to an electron j in a spin-orbital

Xk

1
Je () = f Xl — k() dx; D). (2.9)
1

On the other hand, the exchange operator K (i) represents the effect of the exchange of

electron i with an electron j in a spin-orbital y:

1
Ke(i) () = f D=1 dxj k(. (2.10)
2]

The energy associated to the mean-field operator is thus:

n n
E"=23 3 i | Je@) | xo) = x| K@ | 2, @.11)
i k

N | —

where the terms J; (i) and K; (i) cancel each other out.
The sum of the monoelectronic Hamiltonian k(i) and the mean-field operator constitutes

the Fock operator:

(@) =h@i)+ ) Ur(i) — Ke (D). (2.12)
k

One last term must be included: the Coulombic potential VNN due to the repulsion between
the nuclei. Since it is not a function of the electron coordinates r; but only of those of the nuclei
R;, it is simply a constant (for a given geometry of the nuclei) that needs to be added to the

potentials:

(v | v w) = vIN(y | gy = RN, (2.13)

Putting Egs. 2.7, 2.11 and 2.13 together, we obtain the Hartree-Fock energy for a fixed geom-

etry of the nuclei:

EHF

DN =

Z_;(xi | Ty | xi) = Cxi | Kiel) | )+ VY. (2.14)
1

Our aim is now to find the wavefunction that minimizes this energy while ensuring that the
spin-orbitals stay orthonormal. This amounts to a problem of optimization under constraint,
which can be solved with the method of Lagrange multipliers by defining the following Lagrange

function L:

n n
L=E=Y > Aij(xi | x5) (2.15)
L

where A;; are the Lagrange multipliers. Taking the derivative of these equations to impose 6 £ =

0 leads to the n Hartree-Fock equations:

F@) i@ = Ak x (). (2.16)
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2.1. Ab initio methods

Being nonlinear, the Hartree-Fock equations need to be solved iteratively: starting from an
“initial guess” of wavefunctions {y}, the corresponding mean field and Fock operators are calcu-
lated and used to compute a new set of wavefunctions. This new set then serves as the starting
point of the next iteration of the algorithm, and so on, until a self-consistent field is reached,
i.e. until the calculation has converged to a set of orbitals that respects Eq. 2.16 and that corre-

sponds to a global minimum of the energy.

While this can be achieved using a purely numerical approach for atoms, the resolution of
the Hartree-Fock for molecules is usually carried out using an analytical approach based on the
expression of the molecular orbitals as a combination of m functions from a basis set:

Xi®) = ciq LalD). 2.17)
a=1

This approach is called Linear Combination of Atomic Orbitals (LCAO), as the basis func-
tions {4 (r) are usually modeled after atomic orbitals (although they are generally not solutions
of the atomic Hartree-Fock equations: rather, they are “atomic orbitals” in the sense that they
are each centered on a specific atom). The resolution of the Hartree-Fock equations now re-
quires finding the values of the coefficients {c} in order to obtain the best expression for the
orbitals {y}. Using a matrix notation, the Hartree-Fock can be rewritten in terms of the coeffi-

cients {c} as:

FC=8CA, (2.18)

where F is the matrix of the Fock operator in the basis of the atomic orbitals {{}, C is the matrix of
coefficients {c}, A is the diagonal matrix of orbital energies and S contains the overlaps between
the atomic orbitals, i.e. Sqp = ({al{p). This form of the Hartree-Fock equations is called the
Roothan (or Roothan-Hall) equation and is solved by diagonalizing F:

|F-ASI=0. (2.19)

This yields as many solutions as there are atomic orbitals in the chosen basis. n of these so-
lutions correspond to occupied spin-orbitals while the remaining (m — n) solutions correspond

to unoccupied, so-called “virtual” spin-orbitals.

The higher the number m of basis functions ¢, the lower the energy and the better the re-
sult: increasing the size of the basis set increases the flexibility offered to the spin-orbitals y and
brings the electronic wavefunction ¥ closer to its exact form upon optimization. However, even
with an infinite basis set, the Hartree-Fock method will never yield the exact result for systems
with more than one electron: its biggest flaw is that it relies on the mean-field approximation
and on the assumption that the molecular system can be accurately described by a single elec-

tronic configuration, which leads to the neglect of electron correlation.

To go beyond these approximations and take (part of) the electron correlation into account,

more complex ab initio approaches called post-Hartree-Fock methods have been developed.
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Chapter 2. Ab initio calculations

2.1.2 Configuration Interaction

While the Hartree-Fock method is very convenient, it is often used as a first step to more
refined and more resource-intensive approaches that aim at taking the electron correlation into
account.

As we have seen in Eq. 2.2 (p. 46), the Hartree-Fock approach expresses the electronic wave-
function as a Slater determinant (or a linear combination thereof, i.e. a CSF) that corresponds
to a single electronic configuration. The Configuration Interaction (CI) method goes one step
further by expressing the wavefunction as a linear superposition of CSF corresponding to sev-
eral electronic configurations, by promoting one or more electrons to the unoccupied, “virtual”
spin-orbitals.

The wavefunction is thus expressed as a linear combination of the Slater determinants rep-
resenting not only the base configuration, but also the ng possible “singly-excited” configura-
tions corresponding to the promotion of one electron towards a virtual spin-orbital, the np pos-
sible “doubly-excited” configurations corresponding to the promotion of two electrons towards

virtual spin-orbitals, and so on for triple, quadruple, ... excitations:
ns np nr
Yl = gowel + Y @dwelS+y aPwell 1y glwel Ty (2.20)
i i i

In this expression, the factors d are called the CI coefficients and are optimized variationally
(while respecting the constraint that the total wavefunction ¥ ! remains normalized). A Full
CI approach implies taking into account every possible excitation of each electron in the total
wavefunction. For most systems, this would however require a prohibitive amount of resources,
which is why a SDCI approach is often used by truncating the sum in equation 2.20 after the sin-
gle and double excitations (hence the “SD” in “SDCI”). This is justified by the fact that the con-
figurations corresponding to single and double excitations are those that contribute the most
to the energy, with triple excitations and beyond requiring more computational resources while
only yielding diminishing returns. Note that for a two-electron system such as HeH*, a SDCI is

equivalent to a full CI.

2.1.3 Multiconfigurational methods

A typical CI approach only takes into account excited variants of a single reference config-
uration, using orbitals optimized for this configuration only. Many molecular systems however
cannot accurately be described by a single electronic configuration: multiconfigurational meth-
ods are therefore necessary.

The Multiconfiguration Self-Consistent Field (MCSCF) method expresses the wavefunction
as a linear combination of several CSF at once, as in a truncated CI approach, and optimizes
both the coefficients of the superposition and the molecular orbitals simultaneously in order
to minimize energy. Such calculations however require a large amount of computational re-
sources, which scale nonlinearly with the number of included configurations. It is therefore

important to select which configurations need to be included in the optimization.
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2.1. Ab initio methods

The Complete Active Space Self-Consistent Field (CASSCF) method uses configurations gen-

erated on the basis of the partitioning of the orbitals into three categories:
1) The inactive orbitals, which stay doubly occupied in all considered configurations.

2) The active orbitals, in which the electrons are distributed in all possible ways to form the
CASSCEF expansion.

3) The virtual orbitals, which stay unoccupied in all considered configurations.

CASSCEF approaches thus require the definition of an appropriate active space of orbitals in
which all possible distributions of the electrons will be considered.

Note that a MCSCF calculation can be followed by a CI computation using an approach
called Multireference Configuration Interaction or MRCI, which uses the MCSCF configurations

as reference and expands the wavefunction by adding their single, double, ... excitations.

2.1.4 Basis sets

The choice of an appropriate method of calculation is not the only factor that influences the
accuracy of an ab initio calculation. As we have seen in Eq. 2.17, analytical ab initio calculations
are based on the expansion of the molecular orbitals in a basis of functions {{ (r)}, whose form
and amount deeply affect the result of the calculations (and the computational resources they
require).

Expanding the molecular orbitals in a basis set would not constitute an approximation if
the basis set was complete. Using a complete basis set is however impossible in practice, as that
would require an infinity of basis functions and thus infinite computational resources. As a gen-
eral rule of thumb, increasing the number of function in the basis set allows a better description
of the molecular orbitals and more accurate calculations. However, all basis functions do not
contribute equally to the description of the molecular orbitals: a reasonably accurate depiction
of the molecular orbitals can therefore be obtained if the functions included in the basis set are
chosen wisely [77].

Although these basis functions could theoretically take many shapes, two kind of func-
tions centered on the atomic nuclei are usually used as “atomic orbitals”: Slater-Type Orbitals
(STO), which are usually based on the spherical harmonic functions, and Gaussian-Type Or-
bitals (GTO), which are composed of Gaussian functions or contractions thereof that imitate
Slater-Type functions.

In this work, we use Gaussian-Type Orbitals exclusively. The overlap between two Gaussian
functions is indeed much easier and much faster to calculate than between two Slater-Type
orbitals, leading to a significant computational speedup. To further speed calculations up, a
lot of basis sets are contracted, i.e. they are composed of atomic orbitals that are expressed as

pre-optimized combinations of Gaussian functions:

J _
(a®) =) cai (0] ), (2.21)
i=1
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Chapter 2. Ab initio calculations

primitive
ai
also called primitive functions. These functions take the form:

where the coefficients c,; are pre-optimized* and where { are the Gaussian functions,

(ai®) = N(&) e SR 2.22)

where R is the position of the atom on which the primitive is centered, ¢ is a parameter called
the Slater orbital exponent and N(¢) is a normalization factor.

The smallest possible basis sets include only one function per occupied atomic orbital and
are called minimal basis sets. This is for example the case of the STO-3G basis set, which uses a
single function composed of the contraction of three Gaussians to describe each atomic orbital.

For more accurate calculations, bigger basis sets are however necessary. Double zeta basis
sets for example use two functions to describe each atomic orbital while triple zeta use three,
and so on.

In this work, we use the aug-cc-pVmZ basis sets optimized by Dunning et al. [88, 89], com-
monly abbreviated as AVmZ. Explaining the meaning of their name amounts to explaining their

content and properties:

- aug, meaning “augmented”, denotes the fact that the basis set contains diffuse functions,
i.e. functions with components at large |[r—R| distances, that increase the flexibility of the

basis set.

- cc-p, standing for “correlation consistent polarized”, means that they include increasingly

larger shells of polarization functions (d, f, g, ...) with increasing values of m.

- Vmeans “valence”, indicating that the index m denotes the number of functions used to
describe the valence orbitals, while the core orbitals are described by a single function

each.

— mis the number of functions per atomic orbital, which takes values such as “D” (“double”-

zeta, m = 2), “T” (“triple”-zeta, m = 3), “Q” (“quadruple”-zeta, m=4), 5, 6, ...

One of the advantages of the Dunning bases is that they allow for Complete Basis Set extrap-
olation (CBS). As mentioned earlier, the basis set used to describe a molecular system should
ideally contain an infinity of functions to allow for maximal flexibility in the optimization (and
to therefore reach the lowest possible energy for the chosen method). Although this is impossi-
ble in practice, it is possible to estimate the result that would be obtained with an infinite basis
set by performing computations with AVmZ bases of growing size, then extrapolating the results
to m = oco. This is achieved by fitting the results for different values of m with an appropriate

function then extrapolating its value to m = co [90,91].

fNote however that MOLPRO allows “uncontracted” calculations, in the course of which the coefficients Cqi are
optimized variationally. This leaves more freedom to the optimization procedure, leading to lower energies and
increased accuracy, at the cost of additional computational efforts.
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2.2 Resolution of the vibrational equation

As we have seen, the time-dependent Schrédinger equation (Eq. 1.2, p. 32) can be solved to
obtain the wavefunction W (¢) at any time ¢, provided it is known at a particular time ;. Dynam-
ical simulations therefore require an initial wavefunction W(t). For collisional problems, this
wavefunction must be built from scratch, by constructing a superposition of plane waves with
different energies to create a wavepacket (Gaussian wavepackets are for example commonly
used).

In the case of photodissociation reactions, such as those studied in Chapters 3 and 4 of this
work, the initial wavepacket is however based on the rovibrational wavefunction of the initial
state: the system is assumed to undergo a Franck-Condon (i.e. vertical) transition upon absorp-
tion of the photon, which corresponds to a distribution of the initial rovibrational wavefunction
on the different excited states based on the corresponding transition dipole moment (this will
be further detailed in Section 3.2.1.1, p. 82). The theoretical description of the dynamics of a
photodissociation reaction therefore requires the resolution of the nuclear equation for the ini-
tial state in order to obtain the corresponding rovibrational wavefunctions.

This can be achieved by expanding the vibrational wavefunction in a basis of M functions
B;(R):

M
¥ (R) =Y ¢ Bi(R) (2.23)
i

In this work, this was done in a basis of B-spline functions [92] for the X 'X*, a 32+ and b
33" states of HeH™ and in a basis of sines for the X 3II state of CO?*. The vibrational equation
was solved for different values of the rotational quantum number J by adding the rotational
energy term E™'(R) = B(R) J(J + 1) to the potential energy curves.

2.3 Abinitio calculations for HeH"

2.3.1 Abinitiodata from Loreau et al.

All dynamical calculations presented in this work were performed using the potential energy
curves, nonadiabatic radial couplings and dipole moments computed by Loreau et al. [2] at the
CASSCEF and ClI level using the MOLPRO quantum chemistry package [84].

That work expanded and improved upon the previous series of studies of the excited states

of HeH" performed by Green et al. [19-22] in several ways:

— A larger basis set was used. To ensure a correct description of the excited states, the
calculations were performed using the aug-cc-pV5Z basis set supplemented with one
contracted Gaussian function per orbital per atom optimized by Loreau et al. with the
AUTOSTRUCTURE [93-95] program to accurately describe the dissociation into excited
states of helium. In total, a [8s, 7p, 5d, 3f, 1g] basis set was used for both atoms.
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Chapter 2. Ab initio calculations

— The calculations included states up to n =4, i.e. 19 12, 1932%, 12 '11, 9311, 4 'A and 2 3A

states.

— Calculations were performed for much higher internuclear distances (up to R=200 ay), as
the description of the Franck-Condon region alone is insufficient to perform dynamical

simulations.

In addition to their adiabatic potential energy curves, Loreau et al. computed the perma-
nent and transition dipole moments of each state, as well as the radial and rotational coupling
matrices, which were used to diabatize both the potentials and the dipole moments. Only the
couplings between successive states Fy; ,+1 were taken into account in the determination of
the adiabatic-to-diabatic transformation matrix D(R). Further details about the calculations of
Loreau et al. can be found in Ref. [2].

In this work, we focus on the X !X+ — 13+ transitions as well as the a,b 3x* — 33+ 311
transitions. The potential energy curves and dipole moments of the !X * states included in our
dynamical calculations are shown in Figs. 2.1 and 2.3 while those of the 32" and ®I1 states are
shown in Figs. 2.2 and 2.5. Tables 2.1 and 2.2 give the fragments corresponding to the dissocia-
tion of each molecular state as well as the symbol used to designate each state in this work. For
convenience, the ' 2 states are denoted by uppercase Roman letters according to spectroscopic
conventions, while the 3" states are denoted by lowercase Roman letters and the 3II states are
denoted by lowercase Greek letters.
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Figure 2.1: Adiabatic (left) and diabatic (right) potential energy curves of the n = 1-3 13+ states
of HeH*. Full lines: states dissociating into He + H*, dotted lines: states dissociating into He* +
H.
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Figure 2.2: Adiabatic (left) and diabatic (right) potential energy curves of the n = 1-3 3Z* (blue)
and 311 (red) states of HeH*. Full lines: states dissociating into He + H*, dotted lines: states
dissociating into He* + H.
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Figure 2.3: Adiabatic (left) and diabatic (right) transition dipole moments between the X ly+
and the n =2-3 1=* states of HeH™.
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Figure 2.4: Adiabatic (left) and diabatic (right) transition dipole moments between the a 3x*
and the other n = 2-3 32" states of HeH™.
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Figure 2.5: Adiabatic (left) and diabatic (right) transition dipole moments between the b 3x*
and the other n = 2-3 33" states of HeH™.
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Table 2.1: HeH" electronic states included in our dynamical simulations, ordered by symme-
try and increasing dissociation energy. For convenience, !X states are denoted by uppercase
Roman letters while 3X" states are denoted by lowercase Roman letters.

Designation Symmetry Corresponding fragments

X

A

Iz+

lz+

Iz+

lz+

lz+

He(1s?'S) + H'
He'(152S) + H(1s2S)
He(1s2s'S) + H'
He't(1s2S) + H2p 2P)
He't(1s2S) + H(2s2S)

He(1s2p 'P) + HY

3z+

SZ+

3z+

3z+

3z+

3z+

3z+

3z+

3z+

He't(1s2S) + H(1s2S)
He(1s2s3S) + HY
He(1s2p3P) + HY
He't(1s2S) + H2p 2P)
He't(1s2S) + H(2s2S)
He(1s3s3S) + H*
He(1s3p3P) + HY
He'(1s2S) + H(3d ?D)
He'(1s2S) + HB3p 2P)
He(1s3d 3D) + HY

He" (152S) + H(35 2S)
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Table 2.2: HeH" electronic states included in our dynamical simulations. For convenience, 311
states are denoted by lowercase Greek letters (continued from previous page).

Designation Symmetry Corresponding fragments

a 3 He(1s2p3P) + H'
B 3 He'(1s2S) + H2p 2P)
Y o He(1s3p3P) +H'
) 3 He't(1s2S) + H(3d °D)
€ 3 He(1s3d 3D) + H'
{ n He't(1s2S) + H(3p 2P)
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2.3.2 Rovibrational levels of the X '2*, a3>* and b 3Z* state of HeH™*

In this work, we study the dynamics of photodissociation and radiative association reactions
involving the X '=*, a32* and b 3X™ states of HeH", which requires computing their rovibra-
tional wavefunction as accurately as possible. In this aim, we computed the potential energy
curves of the X, A,B 'X* and a, b 32" states during our master thesis using the same param-
eters as Loreau et al., except for the basis set, which was varied from AVTZ to AV6Z (while still
retaining the additional basis functions optimized by Loreau and coworkers [2]). These AVTZ,
AVQZ, AV5Z and AV6Z series of results were then used to extrapolate the potential energy curves

to Complete Basis Set, using a simple exponential function to fit the m = 3-6 results:

Ep = Epmeoo+ Ae B, (2.24)

An excellent agreement was found between our CBS-extrapolated results for the X, A, B, a, b
states and the AV5Z results of Loreau et al. The latter were therefore used in all dynamical cal-
culations presented here as they are far more extensive than our own calculations. The CBS-
extrapolated data was however used to compute the energy and wavefunctions of all rovibra-
tional levels of the X !X" as well as of the @ and b 3X™ states, as molecular dynamics are known
to be sensitive to the shape of the initial wavefunction.

In the case of the X X7 state, only the photodissociation from the lowest v = 0, J = 0 rovi-
brational level was considered (see Chapter 3, p. 77 for more details). The wavefunction for this
level and the energy of the other vibrational levels are shown on the potential curve of the state
in Fig. 2.6, while their energy and the number of rotational levels situated below the dissociation

limit for a given value of v are shown in Table 2.3.
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Figure 2.6: Potential energy curve, vibrational levels for J = 0, and v, J = 0 wavefunction of the
X 12+ state of HeH™.
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Table 2.3: Properties of the vibrational levels of the X !X state of HeH'. “Rotational levels”
denotes the number of rotational levels situated below the dissociation limit for a given v.

v Energy (hartree) Rotational levels
0 -2.97124353 24
1 -2.95798198 22
2 -2.94611664 21
3 -2.93565519 19
4 -2.92661993 17
5 -2.91904775 15
6 -2.91298791 13
7 -2.90848989 11
8 -2.90556267 8
9 -2.90405789 6
10 -2.90352197 4
11 -2.90340866 2

In the case of the a and b 3" states, we studied the photodissociation from the lowest ro-
tational J = 0 level of every vibrational level (more details about this decision and the role of J
are given in Chapter 3). Figures 2.7 and 2.8 show the potential energy curves, vibrational en-
ergies for J = 0 and some of the corresponding wavefunctions for states a and b 3Z*, respec-
tively. Their energies and number of rotational levels below the dissociation limit are given in
Tables 2.4 and 2.5.

Table 2.4: Properties of the vibrational levels of the a 3Z* state of HeH'. “Rotational levels”
denotes the number of rotational levels situated below the dissociation limit for a given v.

v Energy (hartree) Rotational levels
0 -2.50129691 15
1 -2.50085152 12
2 -2.50044177 9
3 -2.50014388 7
4 -2.49999315 5
5 -2.49994062 3
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Figure 2.7: Potential energy curve, vibrational levels for J = 0 and a few vibrational wavefunc-
tions of the a 3X* state of HeH™.
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Figure 2.8: Potential energy curve, vibrational levels for J = 0 and a few vibrational wavefunc-
tions of the b 3X* state of HeH™.
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Table 2.5: Properties of the vibrational levels of the b 3" state of HeH*. “Rotational levels”
denotes the number of rotational levels situated below the dissociation limit for a given v.

v Energy (hartree) Rotational levels
0 -2.20022691 74
1 -2.19844180 72
2 -2.19671292 70
3 -2.19504077 68
4 -2.19342593 66
5 -2.19186892 64
6 -2.19037024 62
7 -2.18893037 59
8 -2.18754997 57
9 -2.18622999 55
10 -2.18497185 53
11 -2.18377755 50
12 -2.18264974 48
13 -2.18159174 46
14 -2.18060751 44
15 -2.17970148 41
16 -2.17887834 39
17 -2.17814248 37
18 -2.17749725 35
19 -2.17694381 33
20 -2.17648011 30
21 -2.17610048 28
22 -2.17579624 26
23 -2.17555716 24
24 -2.17537269 22
25 -2.17523306 21
26 -2.17512983 19
27 -2.17505544 17
28 -2.17500330 15
29 -2.17496740 12
30 -2.17494373 10
31 -2.17492954
32 -2.17492279 3
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2.4 Ab initio calculations for CO**

2.4.1 Earlier studies of CO%**

As mentioned in the introduction, the molecular dication CO?>* has been the subject of a
large number of studies, both experimental and theoretical.

Dozens of experimental studies on CO?* have been realized since its first detection in
1930 [44], using techniques such as electron impact [96], Auger spectroscopy [59, 68], electron
loss and double electron capture collisions [97], threshold photoelectrons coincidence spec-
troscopy [64, 98], translational energy spectroscopy [61], photoion-fluorescence photon coin-
cidence [99], single-photon or multiphoton ionization of CO with ultrashort pulses [66], and
many more.

In the last twenty years, many works have focused on the study of CO?>* in ion storage rings,
allowing for more accurate measurements of its spontaneous dissociation [63, 100] (which was
found to occur on a timescale of several seconds) and of its dissociative recombination [101].

The 2010 experimental closed-loop control of the vibrational population performed by Wells
et al. [102] is of particular interest. A genetic algorithm was used to optimize a laser pulse which
predominantly ionizes CO into either “non-dissociative” CO?%* (i.e. CO%* in a metastable state)
or dissociative CO?", leading to the detection of its fragments C* + O". This amounts to con-
trolling the double ionization of CO to form CO2* in either the v = 0,1 levels of the X 31T state
and the v = 0 level of the lowest ! state, or in higher excited vibrational levels and dissociative
electronic states. In Chapter 4 of this work, we theoretically explore another form of control:
starting from CO?* in the metastable v = 0 level of the X II state, we optimize laser pulses that
selectively photodissociate the molecule through its first 3~ channel correlating to the C>* +
O fragments. This scheme allows us to take advantage of the fact that vibrationally-pure CO?*
can be obtained experimentally, simplifying the control scheme and future experimental im-
plementations: otherwise, cooling techniques would first have to be used to cool the molecule
down vibrationally (see for example Ref. [103]).

Publications focusing on the theoretical description of CO?>* have been fraught with con-
tradictions regarding both the symmetry of its lowest electronic state and the predissociation
lifetimes of its metastable states.

Chronologically, the first attempt at a theoretical description of CO?>* appears to be the 1961
semi-empirical work of Hurley and Maslen, which relies on the virial theorem to derive an ap-
proximate expression of the potential energy curves of diatomic dications based on the corre-
sponding curves of their neutral counterpart [104]. This approach however only yielded an esti-
mation of the basic parameters characterizing the potential energy curves of the lowest states of
such cations and was abandoned in favor of more accurate ab initio calculations in later works.

The first real ab initio study of CO** was performed by Wetmore et al. in 1984, who cal-
culated the potential energy curves of the first few electronic states of each symmetry of CO?*
from R =1 to 3 A, using a Restricted Hartree-Fock SCF method with a [3s, 2p, 1d] basis set fol-
lowed by a CI calculation [67]. Although this work is notable for including 3-5 states of each
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symmetry, it suffers from a low accuracy compared to more recent studies. It for examples in-
correctly predicts the ground electronic state of CO?* to be its lowest 32~ state, and describes it
as having a small potential energy barrier instead of as being purely dissociative. Wetmore and
his team attempted to explain the observed long lifetime of CO?* in experiments and correctly
attributed it to the X 3II state, but erroneously concluded that its first lowest vibrational lev-
els would quickly predissociate through the neighbouring 32~ channel and that the v = 2 level
would have a longer lifetime.

The accuracy of Wetmore’s original study was called into question in a 1985 study by Correia
et al. using a CASSCF/MRCI approach with [5s, 3p, 1d], [7s, 6p, 1d] basis sets [68]. Their results
partially contradict those obtained by Wetmore: notably, Correia et al. predict the ground state
to be a 1 X state. Once again, this result was later contradicted by ulterior studies.

In 1989, Lablanquie et al. performed an experimental and theoretical study of the formation
of CO?* [62]. They computed the potential energy curves of the first states of the 'T1,3I1,' =+ 3 X
and 32~ symmetries using a SCF/CI approach in a [5s, 4p, 3d] basis set. Unlike Wetmore et al.,
they correctly described the first 3~ as being dissociative, although they still predicted it to be
the ground state.

This work was quickly followed by another 1989 study by Larsson et al, who used a
CASSCF/MRCCI approach with a [8s, 6p, 2d] basis to describe the first lowest state of the 3I1,
3%7,3x%, 12 I and ' A symmetries, as well as the second !X* state of CO** [69]. This time,
the ground state was correctly predicted to be the 311 state, as confirmed by subsequent studies.

Also notable is the 1993 publication of Andersen et al., for two reasons [63]. It was the first ex-
perimental evidence that CO?* can be stable on a timescale of several seconds, with a measured
lifetime of 3.8 seconds at least. Moreover, Andersen and his coworkers used CASSCF/MRCI cal-
culations with a [8s, 5p, 3d, 1 f] basis set to compute not only the potential energy curves of the
first lowest 311,227, [Tand ! =+ states, but also the spin-orbit couplings between the 3I1,3 2~ and
13+ states. Using these results, they estimated the predissociation lifetime of these electronic
states and concluded that the 3I1(v = 0) level is responsible for the long lifetime of the species,
although their calculations yielded a much shorter lifetime than expected (20 ms instead of the
observed > 3.8 s).

Another important study is that of Eland et al. in 2004 [57], who performed high level ab ini-
tio computations for the first 31,2 £*,3 7, 1, 1 A states as well as the two lowest ! =" states using
a CASSCF/MRCI approach in the cc-pV5Z basis set. The tunneling widths of the vibrational lev-
els of the metastable states were also computed and give an upper limit to their predissociation
lifetime, as spin-orbit mediated predissociation through other electronic states is not taken into
account in that work'.

In 2006, Sedivcova et al. performed a CASSCF/icMRCI study of the nine lowest states of
CO?* using the cc-PV5Z and cc-PV6Z basis sets [105], and estimated the corresponding spin-

For example, we obtain a lifetime of 10*3 seconds for the X 3TI(v = 0) level, based on the = 1/27¢T formula and
the tunneling width " = 0.41669 x 10795 cm™1 given in the paper. The real lifetime is of course expected to be
much shorter due to predissociation through the 33~ state, as later shown by Sedivcova et al. and Mrugala [49,
105].
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orbit couplings. This data was additionally used to compute the predissociation lifetimes of the
vibrational levels of the ground X °II state, leading to the conclusion that the lifetimes of the
v = 0,1 levels of the X 3I1 state are much longer than 10 us. Along with those of Eland et al., the
calculations of Sedivcova et al. remain the most accurate for CO?* to this day.

Kumar et al. performed an additional study of the lowest states of CO™* with n = 0—6 at
the CASSCF/MRCI level using the AVQZ Dunning basis set [106]. Their work on CO?" includes
the first 3IT and 3Z* states computed with a (3 a;, 2 b1, 2 by) active space, and the lowest 3y~
state computed with a (2 ay, 2 by, 2 b») active space*. Although it is notable for studying the first
electronic states of highly-charged carbon monoxide cations, this work brought little new to our
knowledge of CO?" as its lowest electronic states had already been described more accurately
in earlier studies.

Finally, Mrugata further used the spin-orbit couplings computed by Sedivcova et al. [105],
combined this time with the potential energy curves calculated by Eland et al. [57], to compute
the predissociation lifetime of vibronic states of CO2*, as this combination of ab initio data was
found to best reproduce the experimental measurements [49]. More precisely, the repulsive
potential of the lowest 32 state as calculated by Sedivcova et al. was found to be insufficiently
accurate in the medium-range internuclear distance, requiring the use of the potential energy
curves of Eland et al. instead. Using this data, Mrugata obtained a lifetime of 3.6 x 102 s for the
v =0 level of the X 3I1 state and of 0.48 s for its v = 1 level. Based on Mrugata’s conclusions, we
use the ab initio results of Eland et al. as a point of comparison for ours.

To summarize, the current understanding of the lifetime of the vibrational levels of the X 31
state CO?" is the following: excited vibrational levels predissociate due to spin-orbit coupling
to the repulsive lowest 32~ state, while the v = 0 and v = 1 vibrational levels, situated below the
crossing between the two electronic states, have a much longer lifetime [102,105]. It is now well-
established that the v = 0 level of the X 3I1 state has a lifetime of several seconds [63], allowing
for the experimental production of electronically and vibrationally pure CO?* [107] and its use
in quantum control experiments.

Note that all theoretical studies of CO?* thus far have focused on the lowest states of each
symmetry only. Moreover, all these calculations were performed (to the best of our knowledge)
in a strict Born-Oppenheimer adiabatic picture, with a complete neglect of all nonadiabatic
couplings (although spin-orbit couplings were taken into account in some of the most recent
studies in order to properly describe the predissociation lifetime of the lowest electronic states).
In this work, we describe the excited 32~ states of CO%* for the first time, in the adiabatic and

the diabatic representation.

2.4.2 Ab initioresults for CO%*

Our aim in this work was not to improve the accuracy of earlier adiabatic potential curves,

but to compute the potential energy curves, nonadiabatic couplings as well as permanent and

T Their calculations were performed in MOLPRO, which only works in Abelian point group of symmetry, as ex-
plained in Section 1.6 (p. 41).
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transition dipole moments for the ground X 31 state as well as for the first 11 32~ states of CO?*,

most of which had never been described theoretically before.

More specifically, our aim was to compute the ab initio data required to describe the pho-
todissociation of CO?* through its 32~ states leading not only to fragments C* and O™ but also
to C?* + O, as well as to compute laser control fields guiding the photodissociation process to-
wards this second pair of fragments. This required computing a large number of 32~ states, as
the first X~ channel that dissociates into C>* + O is the ninth one, in the Franck-Condon region.
Moreover, we also included several higher-excited states to increase the accuracy of the highest-
lying potential energy curves. In total, 13 32~ states were included in our ab initio calculations,
but only 11 were used in our dynamical simulations in an effort to reduce the duration of the

computations (see Chapters 3 and 4).

We chose to focus on the 32~ states of CO?" instead of the 311 states for two reasons. First
and foremost, the photodissociation predominantly occurs through the I1 — X perpendicular
transition [107], making the X states a better target for laser control. Moreover, these transitions
have been less studied than the parallel IT — IT and £ — X transitions. Secondly, from a practical
point of view, the lowest 3X~ that dissociates into C>* + O instead of C* + O" is the ninth one,
while all 311 states up to the fourteenth dissociate into C* + O*. Studying the photodissociation
into C2* + O through the 32~ channels thus required less computational effort than through the

311 channels as fewer electronic states needed to be included in the calculation.

Moreover, the computation of a large number of 32~ states is easier in MOLPRO than the
computation of 3II states: being doubly degenerate, each II state counts as two states in the
input of MOLPRO, which normally restricts the number of states that can be included in a cal-
culation to 10. Thankfully, this number was increased to 20 by J. Liévin by modifying part of
the MOLPRO 2006 source code during Jérome Loreau’s computations on HeH™, a fact we took

advantage of during our work on CO?*.

Our calculations were however made difficult by severe convergence problems, that re-
quired the use of a very small spatial step AR between two computations (as small as 0.001 ag in
some regions) to ensure convergence. Although this may seem excessive, the use of such small
steps proved invaluable later on when correcting the signs of the radial nonadiabatic couplings
and dipole moments, as discussed further in Section 2.4.4 (p. 71). Starting from computations
at values of the internuclear distance R for which the algorithm converged well, several series
of computations were performed in parallel towards lower and higher values of R in order to

obtain a complete picture of the potential energy curves from R = 1.5 to 100 ap.

Due to the large number of states included in our basis and the need for a very small spatial
step between two calculations in some regions, our main series of calculation was performed
in the AVTZ basis set to keep the computational time within reasonable limits. Additional cal-
culations were however performed in the AVQZ, AV5Z and AV6Z basis set and compared to the
AVTZ results. Although (as expected) the absolute energies of the states vary from one basis to
another (up to = 0.010 hartree), the difference of energy between the states varies comparatively
little (= 0.003 hartree at most).
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2.4. Ab initio calculations for CO%*

In the end, we had to choose between using a large basis and using a fine spatial grid to
ensure convergence and a good description of the nonadiabatic couplings. Given the amount
of avoided crossings between the considered states, the important role played by the couplings
in the dynamics of species such as HeH* and the relatively small impact of the basis set on the
relative energies, we chose to perform calculations in the AVTZ basis set and to use a very fine
spatial grid (as small as AR = 0.001 g in some regions). All calculations were performed with
active space (6 ay, 2 by, 2 b») as it was found to have good convergence properties.

The nonadiabatic d/0R radial couplings were directly computed in MOLPRO using the 3-
point finite difference method (i.e. by numerically computing the derivative of the wavefunction
at a given distance R based on its value at two slightly displaced distances R + 6 R), while the

rotational couplings were neglected in the present study.
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2.4.3 Computation of the ground X 31T and of the first 133X~ states of CO?**

Table 2.6 gives the fragments corresponding to the dissociation of the CO?* electronic states
included in our calculations. As previously reported in the most recent studies of CO?>*, we find
the 311 state to be the ground state of CO?* and to possess a potential energy barrier, with an
equilibrium distance R, = 1.26 A, in agreement with the calculations of Larsson et al. [69]. Other
values available in the literature range from 1.18 to 1.30 A, as summarized in Table 2.7t. Note
that, although the results of Sedivcova et al. could be expected to be the most accurate, Mrugata
noted in her computational study of the lifetime of the metastable states of CO?* that the best
agreement with the experimental results were obtained when using the potential energy curves
of Eland et al. [49].

Fig. 2.9 shows a comparison of the potential energy curve of the lowest 31 state of CO?* as
obtained in this work and as computed by Wetmore ef al. [67] and Eland et al. [57]. To allow for
easy comparison despite their use of different energy scales, the absolute energy of the curves
of Wetmore et al. and Eland et al. was shifted so that they match ours at large internuclear

distances.
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m  Wetmore et al.
-110.50 A FEland et al. 7]

Potential energy (hartree)

-111.75 +——1—"1—1"—T"—"T"—"T"—"T"—T"—T T
1.0 1.5 2.0 2.5 3.0 35 4.0 45 50 55 6.0 65 7.0 7.5 8.0 85 9.0

Internuclear distance (a,)

Figure 2.9: Comparison of our potential energy curve for the X 3IT state of CO** (black line)
with that of Wetmore et al. (red squares) and Eland et al. (blue triangles), adjusted to converge
towards the same energy at large internuclear distances (the squares and triangles represent the
only numerical values given explicitly in their papers).

fIn addition to the values presented in Table 2.7, Kumar also incorrectly reported the equilibrium distance of
Eland et al. [57] as being equal to 1.138 Ainstead of 1.30 A. The origin of that value is however unknown and may
have been caused by a typographical error, as it does not appear to match with any other study.
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Table 2.6: CO** electronic states included in our dynamical simulations. For convenience, 3X~
states are numbered in ascending order of energy of their atomic fragments.

Designation Symmetry Corresponding fragments

X 3o
1 3%~
2 3%~
3 33~
4 3%~
5 3%~
6 33~
7 3%~
8 33~
9 3%~
10 3%~
11 33~

Ct(2s%2p2P) + 0T (25%2p3 19)

C*(2s%2p2P) + 0T (25%2p3 49)
C*(2s%2p2P) + 0" (25°2p3 2D)
C*(2s%2p2P) + O+ (25%2p3 2P)
C*(2s%2p2P) + 0T (25%2p3 2P)
C*(2s2p?4P) + O*(25%2p3 2D)
C*(2s2p?2D) + Ot (25%2p3 49)
Ct(2s2p?1P) + O (25%2p° 2P)
C*(2s2p?4P) + 0T (25%2p3 2P)
C?* (252 18) + 0(2s22p* *P)

C*(2s2p?28) + 0T (2522p3 4S)

C*(2s2p?2D) + Ot (25%2p° ?D)

Table 2.7: Equilibrium distance R, of the X 311 state of CO?* as reported in the literature and as

computed in this work.

Study Re(A)
Wetmore et al. [67] 1.18
Larsson et al. [69] 1.261
Lablanquie et al. [62] | 1.28
Veseth [108] 1.238
Eland et al. [57] 1.30
Sedivcova et al. [105] | 1.2392
Kumar et al. [106] 1.247
This work 1.26
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The literature unfortunately contains very little data on the 32~ states of CO?>". The 1989
study of Wetmore et al. included the five lowest 33~ states of CO%*, however, its relatively low
accuracy makes comparisons uneasy [67]. Moreover, their result for the lowest 3X~ state are
in disagreement with those of subsequent studies, as they predict the state to be quasibound
instead of purely dissociative. Fig. 2.10 shows a comparison of the potential energy curve of the
lowest 32~ state of CO%* as obtained in this work and as computed by Wetmore et al. [67] and
Eland et al. [57]. Again, to allow for easy comparison despite their use of different energy scales,
the absolute energy of the curves of Wetmore et al. and Eland et al. was adjusted to match that
of ours at large internuclear distances.

Fig. 2.11 shows the adiabatic potential energy curves of the X 3II state and of the 11 first 3~

states of CO?* as computed in this work.
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Figure 2.10: Comparison of our potential energy curve for the lowest 3=~ state of CO?>* (black
line) with that of Wetmore et al. (red squares) and Eland et al. (blue triangles), adjusted to
converge towards the same energy at large internuclear distances (the squares and triangles
represent the only numerical values given explicitly in their papers).
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Figure 2.11: Adiabatic potential energy curves of the X 311 (red curve) and of the 11 lowest 33~
states of CO?" (blue curves). Full lines: states dissociating into C* + O, dotted line: state disso-
ciating into C2* + O.

2.4.4 Sign error corrections

Calculations of transition dipole moments and nonadiabatic couplings performed with
MOLPRO suffer from an unfortunate problem: the results are obtained with an arbitrary sign,
as MOLPRO computes the wavefunction with an arbitrary phase. This implies that, from one
calculation to another, the signs of non-diagonal physical quantities which depend on the rel-
ative sign of two wavefunctions (such as transition dipole moments and radial nonadiabatic
couplings) are susceptible to change. Fig. 2.12 shows two such “sign errors” in the nonadiabatic
radial coupling between the second and third 32~ states of CO?*.

Although this problem tends to be ignored or at least not mentioned in the vast majority of
works', it is essential that these signs be coherent — especially if one wants to interpolate the
data points to express them on a regular grid, as is for example done in order to use them in
dynamical calculations. If not corrected beforehand, the values interpolated between points
affected by a change of sign would be incorrect, potentially leading to significant errors even
in situations where only the absolute value of the considered physical quantity is physically
relevant.

We therefore attempted to develop a simple code which would read the uncorrected dipole

moment and coupling values as a function of R, compare the value at each gridpoint with an

fwith notable exceptions, such as the works of Errea et al. [109].
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Figure 2.12: Nonadiabatic radial couplings between the second and third 32~ states of CO**
before and after sign correction. Obvious sign errors can be seen at R = 3.375 and 3.828, leading
to discontinuities devoid of physical meaning.

extrapolation based on the preceding points and flip the sign if it led to a smaller difference
between the two. Upon closer inspection of the results, this code was however found to occa-
sionally lead to errors in the regions where the distance between each data point was too big.

In the end, we found it faster (if somewhat fastidious) to use the usual sign correction
method: by hand, as sign errors are usually obvious to the naked eye when the data is com-
puted on a fine enough grid. The very fine spatial grid we used to compute the ab initio data
proved invaluable in the correction of the signs, as it usually allowed us to plainly see where the
transition dipole moments and radial couplings erroneously flipped signs, even in zones where
they naturally varied strongly with R.

The signs of all 78 radial couplings and 91 transition dipole moments between the X I and
the 13 first 32~ states were thus painstakingly corrected by hand, allowing for the diabatization

of the potential energy curves and transition dipole moments.

2.4.5 Diabatization

As in the case of HeH™, the excited potential energy curves of CO** possess large nonadi-
abatic radial couplings (as could be inferred from the shape of the adiabatic potential energy
curves, which exhibit a very large number of avoided crossings). In addition to reasonably in-
tense couplings, we found a series of very intense and narrow couplings that correspond to the

C?* + O potential energy curve crossing the C* + O curves. Once again, our very fine spatial
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grid turned out to be invaluable in localizing them precisely. However, they were found to lead
to numerical problems in the diabatization algorithm due to their very high values. We thus
performed the diabatization “manually” for these crossings by switching the corresponding po-
tential energy curves and dipole moments at the precise position of the coupling peak, which
amounts to assuming the non-radiative population transfers would be total in these regions.

This procedure already had been used with success earlier, in the diabatization of HeH™ [2].
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Figure 2.13: Nonadiabatic radial couplings between the 11 lowest 3X~ states of CO?*. For the
sake of readability, only couplings between successive states Fy, ;.1 are shown and the largest
couplings (> 100 a.u.), arising from the crossings between the C>* + O potential energy curve
with those of the C* + O™ states, have been omitted.

As in the case of HeH™, Eq. 1.34:

6%2)+]:~D=0, (2.25)
was solved by continuity with the initial condition D(co) = I, in order to ensure that the adia-
batic and diabatic representations are identical at large internuclear distance. The adiabatic and
diabatic potential energy curves are shown in Fig. 2.14 while the dipole moments are shown in
Fig. 2.15. Note that the transition dipole moments are significantly smaller than those of HeH™,
indicating that higher electric field intensities will be required for efficient radiative population

transfer.
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Figure 2.14: Adiabatic (left) and diabatic (right) potential energy curves of the first 11 3~ states
of CO?*. Full lines: states dissociating into C* + O*, dotted line: state dissociating into C>* + O.
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Figure 2.15: Adiabatic (left) and diabatic (right) transition dipole moment between the ground
X 311 state and the first 11 3~ states of CO?*.
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2.4.6 Vibrational wavefunction

The energies and wavefunctions of the quasibound vibrational levels of the X 3II state of
CO?** were computed by solving the nuclear Schrodinger equation in a basis of sines. In this
work, our interest was limited to its lowest vibrational level, as the others are known to predis-
sociate very quickly. All photodissociation calculations for CO>* presented in Chapters 3 and 4
were thus performed with v =0 as initial level.

The energy of the lowest vibrational level is in agreement with values available in the lit-
erature, as reported by Mrugata [49] and Sedivcovd et al. [105], on the basis of their own ab
initio calculations as well as on the experimental threshold photoelectrons coincidence data
of Dawber et al. [98] and Hochlaf et al. [64] (Table 2.8). Fig. 2.16 shows our computed v = 0
wavefunction on the potential energy curve of the X 311 state.

Table 2.8: Energy position in cm™! of the v = 0 level of the X 3II state of CO?* with respect to
the local minimum of its quasibound potential energy well, as reported in the literature and as
computed in this work.

Study E(v=0)(cm™!)
Dawber et al. [98, 105] 806.7
Hochlaf et al. [64,105] 677.1
Sedivcova et al. [105] (Stabilization method) 732.7

Sedivcova er al. [105] (Complex scaling method) | 732.5

Mrugata [49] 732.2

This work 722.0

This ab initio data was used in two ways: first, to compute the cross sections for the pho-
todissociation of the X 3II state of CO™* through the 33~ channels (Chapter 3) and secondly, to
compute laser fields controlling this process to maximize the dissociation through the lowest
C?* + 03X~ channel (Chapter 4).
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Figure 2.16: Computed potential energy curve of the X 3II state of CO?* and wavefunction of
itsv=0,J=01level.
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CHAPTER

3

FIELD-FREE DYNAMICS

Having solved the electronic part of the molecular problem and obtained physical quantities
such as the potential, the nonadiabatic couplings and the dipole moments for a series of fixed
geometries of the nuclei, one may solve the nuclear part of the problem in order to describe the
dynamics of chemical reactions.

Several methods have been developed in this aim and can be split into three main cate-

gories:

— Classical methods, which treat both the electrons and nuclei as classical objects, signif-
icantly simplifying the calculations but leading to results which are often inaccurate for

low energies (at which quantum effects play an important role) [110, 111].

— Semi-classical methods, which rely on the approximation that the nuclei behave classi-
cally, whereas the electrons are correctly described as behaving according to the law of
quantum mechanics. Again, this approach simplifies the computations but may lead to
inaccurate results [110-113].

— Quantum methods, which correctly treat both the electrons and the nuclei as quantum

objects.

As mentioned in the introductory chapter, this last category of approaches is further split
into time-independent and time-dependent methods. Although they both yield the same re-
sults, time-dependent approaches present the advantage of being appropriate even in cases
where the Hamiltonian is time-dependent, such as when it includes a laser field (as studied in
Chapters 4 and 5 of this thesis).
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Chapter 3. Field-free dynamics

In the present chapter, we use a quantum, wavepacket-based time-dependent approach to
study photodissociation and radiative association reactions at relatively low energy. All calcu-
lations presented in this chapter were performed on the HYDRA ULB/VUB computing clus-
ter [86]. The wavepacket propagations and photodissociation cross sections calculations were
realized using the code previously developed in the ThéoSim group of the Laboratoire de Chimie
Physique (Université Paris-Sud), which we modified and adapted to suit our needs.

We start by giving a general introduction of time-dependent quantum dynamics for

molecules, then present our results:
— Forthe b3Z* (Section 3.3.1, p. 92) and the a 3X™ states of HeH" (Section 3.3.2, p. 105).

— For the X 311 state of CO?* (Section 3.4, p. 109).

3.1 Theory of time-dependent quantum molecular dynamics

As we have seen in Chapter 1, the time evolution of any quantum system is governed by the

time-dependent Schrodinger equation:

., 0
ih—Y()=HY(). (3.1
ot

Knowing the wavefunction at a given time #, and assuming H is independent of time, the

state of the system can be found at any other time ¢ through the following equation:

—iH(t - tg)
V() =e h W (to), (3.2)

—iH(t-1ty)

where U(fy,t) =e~ rn is the time evolution operator or simply evolution operator. The time-

dependent description of the dynamics of molecular reactions can thus be split into three steps:

1. The definition of the initial wavefunction W (z,) at time £;.
2. The propagation of this wavepacket in time, from the initial time #; to the desired time ¢.

3. The extraction of the sought-after physical quantity, such as reaction cross sections, from

the behaviour of the wavepacket.

While the definition of the initial wavefunction and the method of calculation of the cross
sections may vary from one type of reaction to the next, the time propagation of the wavepacket
is always realized through the same kind of methods, which we will now briefly explain (Sec-
tion 3.1.1). We will then discuss the form of the initial wavepacket and the method of calculation
of the cross section for the two kind of reactions we studied, photodissociation (Section 3.2.1,

p. 81) and radiative association (Section 3.2.2, p. 86).
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3.1. Theory of molecular dynamics

3.1.1 Time propagation

Different methods have been developed to solve the time-dependent Schrédinger equation
by propagating the wavefunction in time, which differ by the expression of the time evolution
operator. The Chebyshev method for example relies on the expansion of the operator as a sum
of Chebyshev polynomials, but it is known to be very resource-intensive [114-116].

In this work, we use the Split-Operator method, so named because it is based on the ap-
proximation that the evolution operator U (%, t) = ew can be split into a product of several
exponential operators [117,118].

First of all, the propagation from the initial time #; to the target time ¢ is divided into a series

t=ty

of n small timesteps 61 = —*, according to the following sampling criteria:

n
A Vmax '

ot< (3.3)

where AV is the difference between the highest and lowest value of the potential, i.e. the
“energy range” relevant to the calculation.

The propagation of the wavepacket from time fy to ¢ is then achieved by applying » times in
arow the evolution operator for the small timestep 4t:

—iH6r —iH&t  —iHét
U, h=¢ N e N ..e I . (3.4)
n t;:nes

Each of these time evolution operator for the short timestep 0t are further split into a prod-
uct of exponentials, on the basis of the Campbell-Baker-Hausdorff formula from Lie algebra (see
for example Ref. [119], p. 137) and of the fact that H is the sum of T and V, two non-commuting

operators:

—iHbt
U@bt)=e &
—i(T+ V)bt
—e h
iVt —iTét
~e h e NI +006t. (3.5)

The error in 6¢ can be pushed back to the third order by symmetrizing the product of the
kinetic and potential factors [120]:

—iVét —iT6t —iVét
Ubt)~e 2h e h e 21 +0685). (3.6)

In addition to the upper limit given in Eq. 3.3, the chosen timestep ¢ must therefore be small
enough to prevent the error in O(5¢3) inherent to the split-operator method from becoming
significant.

For each timestep 6t of the propagation, the three exponentials are applied on the wave-
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Chapter 3. Field-free dynamics

function in succession. For each term, we adopt the representation where the corresponding
operator is diagonal, using the adiabatic-to-diabatic D transformation matrix and its inverse
D~!. The kinetic operator T is for example best applied in momentum space and the diabatic
basis, where it simply takes the form:

S5tT Sthik?

=1 =1

e h =e 2m 3.7

The transition from one space to the other is realized through the Fourier Transform F or
the inverse Fourier Transform F~!. For each timestep &t, we thus apply the following operations

in succession':

S5tV Sthik? OtV
-l -l -l
Y(t+6t)=e 20DV Fle 2m FDe 2h ¥(). (3.8)

— Position space, adiabatic basis

— Momentum space, diabatic basis

The desired property can then be extracted from the behaviour of the wavepacket. In the
present case, we computed the partial photodissociation and radiative association cross sec-
tions based on the behaviour of the wavepacket in the asymptotic region of the potential energy

curves (i.e. at large values of the internuclear distance R).

3.1.1.1 Spatial grid and complex absorbing potential

This kind of numerical approach requires expressing all data, such as the potential energy
curves, the wavefunctions, ... on a regularly-spaced spatial grid, whose spacing d x is also subject
to a sampling criteria:

0x< H—h, (3.9)
Pmax
where pmax is the highest wavepacket momentum considered in the calculation. The non-
respect of this sampling criterion (which, as the criterion on 6¢ given in Eq. 3.3, can be seen
as direct consequence of the Shannon-Nyquist sampling theorem [121]) can lead to significant
errors in the calculations [122].

The ab initio data is interpolated on this grid, whose length is typically equal to a few dozens
or a hundred atomic units of length ay. Care must however be taken to the fact that the fastest-
moving components of the wavepacket can possibly reach the end of the grid before the end of
the simulation and be reflected back towards the Franck-Condon region, causing interferences.

Since using a very long spatial grid would be impractical and resource-consuming, it is common

Note that this expression is only valid in cases where the Hamiltonian is time-independent. The evolution oper-
ator for a molecular system exposed to an external time-dependent electric field will be given in Eq. 4.55 (p. 132).
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3.2. Reactions studied

to avoid this problem by placing a complex absorbing potential at the end of the grid, which
absorbs any wavepacket that nears the extremity of the spatial grid.

This is achieved by adding the following term to the Hamiltonian [123]:

Haps = H — i Waps(R), (3.10)

where Wyps(R) is a real function that is only non-negligible near the end of the spatial grid. In

this work, it was defined as:

0 for R < Rgps

Waps(R) = R— Ryp)? (3.11)
ans 0.01 B Fabs)™ Raps < R < Rior,
(Rtot_Rabs)

where Ry is the value of R at the end of the grid and Ry is the distance at which the complex
absorbing potential starts. This expression is only valid for the region between R, and Ry, as

Waps was defined as strictly equal to zero on the rest of the grid.

3.2 Reactions studied

This work focuses on the dynamics of two different (but intrinsically linked) processes: pho-
todissociation and radiative association. In this section, we present these reactions and the

methods we used to compute the cross sections and rate constants that characterize them.

3.2.1 Photodissociation reactions

Photodissociation, also called photodecomposition, photofragmentation and photolysis, is
a chemical process in which the absorption of light by a molecule leads to its dissociation
(Fig. 3.1). More precisely, the absorption of one (or more) photon and its conversion into in-
ternal energy places the molecule in the vibrational continuum of an excited state, leading to its

decomposition into two fragments or more:

AB+ N hv — (AB)* — A(a) + B(f), (3.12)

where AB is the parent molecule, N is the number of photons absorbed, (AB)* is the excited
molecule, and A and B are its fragments in internal states « and .

Photodissociation plays an important role in many contexts, such as photosynthesis (where
the photodissociation leads to the oxidation of the oxygen or sulfur of either H,O or H>S), atmo-
spheric chemistry (where it notably serves as the driving force and energy source of the ozone
cycle), laser conception (where it for example serves as the source of population inversion in
iodine lasers [124]) and astrochemistry [125].

From an experimental point of view, photodissociation reactions are also of particular in-
terest as they allow to probe phenomena such as bond breaking, internal energy transfer and

radiationless transitions [111].
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Photodissociation

Dissociation

@) —@©@:

hv Photon

absorption

Potential energy

Internuclear distance

Figure 3.1: General diagram of a photodissociation process.

In this work, we study the photodissociation of the a and b 33+ states of HeH™ towards

higher-lying n = 2-3 3X* and 311 states, as well as the photodissociation of the X 3II state of
CO?* towards its first 11 3~ states.

3.2.1.1 Initial wavepacket and photodissociation cross sections

Photodissociation is initiated by the transition from an initial electronic state 0 to one or
several excited states m'. This means the components of the initial wavepacket 1//6’2{,/ (t=0)
corresponding to the transition from the v, J” rovibrational level of the initial electronic state
0 towards the rotational level J’ of the excited states m are obtained by multiplying the rovibra-

tional wavefunction of the initial state, ¥, (R), by the appropriate transition dipole moments

/JO,m(R)3

Yoy jr—my (R, t=0) = o, m(R) ¥y (R). (3.13)

Several methods exist to compute the photodissociation cross sections on the basis of the
behaviour of the wavepacket.

First of all, the reflection principle gives a simplified but intuitive picture of the relationship
between the photodissociation cross section and the ab initio data it is computed with (i.e. the

wavefunction of the initial rovibrational level, the potential energy curve of the excited state and

fFor clarity, we use the following convention in this chapter: v/, ] denote the rovibrational level of the lower
electronic state (i.e. the initial state in photodissociation but the final state in radiative association), while J/
denotes the rotational level of the upper state. The index v’ is omitted because most of the dissociation channels
we consider have no bound vibrational level.
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3.2. Reactions studied

the photodissociation cross section).

Let us consider the photodissociation of a diatomic molecule through a single excited dis-
sociative channel, and let us approximate the shape of the rovibrational wavefunction of the
initial state by a Gaussian function centered at the equilibrium distance R.. In the classical ap-
proximation, the photodissociation cross section is then given by [111]:

o (E) ~ e~ 2an(Re(B)-R.)

2 dV -1
I —‘ (3.14)

dR |R=R.E)
where ap is linked to the frequency w of the harmonic oscillator associated to the initial elec-
tronic state by the relation ag = pw, R is the equilibrium internuclear distance, and where
R:(E) is the classical turning point, defined by H(R;) = E. Let us further assume that the excited

potential energy curve is approximately linear around R,:

V(R) = V(Re) = Vg (R— Re), (3.15)
ith Vr= av
wi R= _d_R R:Re‘

The photodissociation cross section is then given by:

e [2ar(E-V.2] / [0 V2]

o(E) =
(E) V

(3.16)

Although approximate, this development shows that the general shape of the cross section is
linked to that of the initial wavepacket through a factor that depends on the slope of the poten-
tial of the dissociation channel in the Franck-Condon region. This allows us to get an intuitive
(if somewhat simplified) picture of the relationship between the cross section, the rovibrational
wavefunction of the initial state and the potential energy curve of the excited state, as illustrated
in Fig. 3.2.

This classical and approximate method of computation of the photodissociation cross sec-
tions is however inappropriate for accurate calculations. In this work, we use two quantum
methods of calculations of the photodissociation cross sections, which we show to be comple-
mentary.

The first method allows the computation of the fotal photodissociation cross section

total

UO UH]I!

_ my(E), thatis to say, the sum of the partial, channel-specific cross sections:

total _ partial
O'OUH]”_’]’ (E) - ;Uov/!]/!_)m]! (E)' (3'17)

The total cross section is indeed linked to the behaviour of the wavepacket through the fol-

lowing relation [126]:

oo .
U(t)ol}/?}//_,]/ (E) =4n « ag E Re\/(; C({v”]”(t) el(EO,,/////+E)t/h dt, (3.18)

where E is the photon energy, Ey,;» is the energy of the rovibrational level of the initial state and
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Potential energy V

Internuclear distance R

Figure 3.2: Illustration of the one-dimension reflection principle from a bound state to a purely
dissociative channel (black curves). The cross section predicted through the reflection princi-
ple for a linear potential is represented by the blue dotted curve on the right, while the full black
curve represents a more realistic case (Picture based on R. Schinke’s Photodissociation dynam-
ics [111]).

Cé (1) is the autocorrelation function of the wavepacket, i.e. the overlap between its shape at

time ¢ and at the initial time #;:

Copp0=% (vl e=0) |yl ). (3.19)

The total cross section characterizes the depopulation of the initial state caused by the ab-
sorption of a photon, but it does not contain any channel-specific information: it for exam-
ple does not tell us through which excited channels the dissociation preferentially occurs. It
is therefore unsuitable if one wants to study the photodissociation of a molecule into specific
fragments, compute photodissociation branching ratios or obtain radiative association cross
sections from a specific excited channel towards the initial state (as will be exposed in Sec-
tion 3.2.2.1, p. 87).

In order to do all of this, it is necessary to use a method that yields the partial (channel-
specific) cross sections, such as the one introduced by Balint-Kurti et al. [127]. In this approach,
the partial cross section characterizing the photodissociation from the initial state 0 through a

specific channel m is given by:
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partial 4712 a a(z) ke
ov'J"'—-m]J' (E) =

s 2
E |A°” J (E)| , (3.20)

mj’

with

" 1 oo " .
A% () = Efo WO (Rey, ) @ B + BN gy 3.21)

mj’ mj’

where p is the reduced mass of the molecule, a is the fine structure constant, k, =

\/ 2u(Egyrjn + E—E ;’;y mptoti o) is the magnitude of the wave number in the considered channel
m and R is a specific internuclear distance chosen for the computation of the Fourier trans-
form A%’}] " Ideally, this distance should correspond to the asymptotic region of the potential
energy curves, i.e. to a large internuclear distance far from the interaction region, where the
molecule can be considered as completely dissociated.

In this work, we use both the autocorrelation method (that yields the total cross section)
and the method of Balint-Kurti et al. (that yields the partial cross sections). Although these two
methods must in principle yield the same result (the sum of the partial cross sections obtained
with the latter method must be equal to the total cross sections computed with the former), they
attain this goal through different means, sometimes leading to discrepancies, as will be shown
in the results of our computations.

Let us simply note for now that the autocorrelation method yields the total photodissocia-
tion cross section on the basis of what happens to the wavepacket in the Franck-Condon region,
as it is based on the overlap of the wavepacket with its form at ¢ = 0 (i.e. immediately after the
excitation). On the other hand, the method developed by Balint-Kurti et al. [127] extracts the
photodissociation cross sections from the behaviour of the wavepacket in the asymptotic re-

gion, at a large value R, of the internuclear distance R).

3.2.1.2 Photodissociation rate constants

As we have seen in Section 1.5 of the introduction (p. 41), whereas cross sections represent
the reaction probability as a function of energy for a single molecule, rate constants are macro-
scopic quantities that are more easily related to the amount of molecules formed or destroyed
in a given set of physical conditions. Knowing the cross sections and the energy distribution for
the physical conditions considered, the corresponding rate constants can easily be calculated.

In the case of photodissociation, one simply needs to know the photodissociation cross sec-
tions and the energy distribution of the incoming photons to compute the corresponding pho-
todissociation rate constants. For example, the rate constants for the photodissociation reac-
tions initiated by photons emitted by a blackbody of temperature T, and of radius R, situated

at a distance R, are given by [25]:

R

k(P)’hot. ( T) —

¥ dEpy, (3.22)

hot.,
4w (Ry\2 [ 05" " (Epy, Tup) E2,
eEhv/kB Ty — ]_

where aghOt"tOt(Ehv, Twm-p) is the total photodissociation cross section characterizing the de-
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struction of the initial electronic state 0, assuming a Maxwell-Boltzmann distribution of pop-

ulation in its rovibrational levels:

— Phot.,tot
Zy”,]” (2]1/ +1e Eyn jnlkp T O.OI/(')]” 0 (Ehv)

(3.23)
Zvrr,]/r (2]" + ]_) e_EU”J"/kB T

Phot.,tot
gy one (Env, Tm-B) =

Note that Ty.p represents the temperature of the Maxwell-Boltzmann distribution of popula-
tion in the initial state, while T, denotes the temperature of the blackbody emitting the photons
responsible for the photodissociation process. As in Roberge and Dalgarno’s study of the pho-
todissociation of the X !X state of HeH™, we chose a ratio (R« /R)? of 1073, which corresponds

to the physical conditions met in planetary nebule such as NGC7027, one of the best candidate

for the detection of HeH™" in space.

3.2.2 Radiative association

Radiative association can be seen as the inverse process of photodissociation: two molec-
ular fragments collide and stabilize towards a bound state of the corresponding molecule by

emitting the excess energy in the form of a photon (Fig. 3.3).

Radiative association

Collision

@) —@

hy Photon
emission

Potential energy

Internuclear distance

Figure 3.3: General diagram of a radiative association process.

Radiative association is known to play a key role in the formation of molecules in space:
at low gas densities, it is the main process by which molecules are formed. In particular, ion
gas phase radiative association reactions are known to play a dominant role in the low den-
sity, low temperature conditions of the interstellar medium, and ion-molecule radiative associ-
ation is thought to play an important role in the synthesis of polyatomic species in interstellar
clouds [128-130]. It is by radiative association that HeH* was first formed in the universe and it
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is thought to remain one of its main mechanisms of formation even today [26].
In this work, we more specifically focus on the formation of HeH" in its @ and b 33+ states
by radiative association of either He* and H or He and H* through the corresponding n = 2 and

3 molecular states (previously listed in Tables 2.1 and 2.2, p. 57-58).

3.2.2.1 Radiative association initial wavepacket and cross sections

Radiative association cross sections are most commonly obtained through time-
independent calculations, which require the discretization of the energy continuum and sepa-
rate calculations for each collisional channel. By contrast, Martinazzo and Tantardini proposed
a wavepacket-based method of computation of the radiative association cross sections, argu-
ing that time-dependent methods often have better scaling properties than time-independent
methods: in their approach, a single time-dependent calculation yields the radiative association
cross section towards all lower channels and for several energies at once [131].

Being a collisional process, radiative association wavepacket-based time-dependent calcu-
lations would in principle require the definition of an initial wavepacket that would be propa-
gated from the asymptotic region of a specific excited channel to the interaction region. Typ-
ically, this wavepacket would be defined as a Gaussian wave packet with a certain initial mo-
mentum, allowing it to cover a particular range of collision energy. Obtaining the cross section
on the whole relevant energy range would thus often require several calculations, each covering
part of the range of relevant collision energy.

In this work, we however use another time-dependent approach to compute the radiative
association cross sections at the same time as the photodissociation cross sections. Since ra-
diative association is the inverse process of photodissociation, the transition dipole matrix ele-
ments M,
photodissociation cross section from an initial rovibrational level v”, J” of the 0 state being given
by [132]:

my (E) = K¥Yopr |l s (E))|? involved in both processes are the same, with the

Phot.,partial(Eh ) = § 71;3 Jil Y S]rr ; M2 o (E) (3.24)
ov'J'—m v 3 c h (47[60) [y ’ 0" ], mJ )

and the corresponding radiative association cross section through the channel m towards all
v", J" levels of the 0 state being given by [132]:

5 "1 43
O'Rad'Ass'(Ek) _ 6_4 T J Vyl/]/r
m—0 3 C?)h (47‘[60) v g =" -1 k%}’l

2
Sy M()y”]”ym]/ (B), (3.25)

where S;» p are the Honl-London factors [133].
The radiative association cross section can therefore directly be computed on the basis of
the same wavepacket propagation as the corresponding photodissociation cross section (or on

the basis of the photodissociation cross section itself). By comparing Eq. 3.24 and 3.25, it is

Rad.Ass.
mj —ov",J"

towards the v, J” level of a lower state is related to the cross section characterizing the photodis-

indeed seen that the radiative association cross section o from an excited channel m
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sociation from that v”, J” level of the lower state through the channel m by the relation [134]:

EZ
Rad.Ass. hv Phot.,partial

O-m]/_,oy//]// = maov”]”—ﬂ’ﬂ]' . (326)

While the photodissociation cross sections are expressed as a function of the incident pho-
ton energy Ey,, the radiative association cross sections are a function of the relative kinetic
energy Ej of the two colliding fragments. The two energy scales differ simply by the photodis-
sociation threshold energy Eresh, v —m, i-e. the energy difference between the initial level

v"J" and the asymptotic energy of a given dissociation channel m (Fig. 3.4):

Ek,v”]”—»m = Ehv - Ethresh,y”]”—»m- (3.27)

The presence of the collision energy E in the denominator of Eq. 3.26 implies that radiative
association cross sections at low energy (and therefore the corresponding radiative association
rate constants at low temperature) are highly sensitive to the value of the corresponding pho-
todissociation cross sections near the threshold energy. Particular care must thus be taken to
the accurate determination of photodissociation cross sections near the threshold energy if one
wants to compute the corresponding radiative association cross sections, as further discussed
in Section 3.3.1.1 (p. 92).

Although computing a radiative association cross section through the propagation of a dis-
sociative wavepacket may seem counterintuitive, it presents some advantages: it circumvents
the problem of the choice of the initial wavepacket shape in collisional problems and it allows
the determination of the cross section on the whole Franck-Condon energy range through a
single propagation, whereas several propagations are usually necessary to cover a wide range of
energy in a time-dependent collisional approach [131]. Note, however, that the “dissociation”
approach used here describes the radiative association from several collision channels towards
a single bound state, whereas the usual collisional approach describes the radiative association
from a single collision channel towards several lower states at once. Our approach is therefore
more time-efficient if one wants to study the formation of a molecule in a specific state by radia-
tive association from several collision channels at once, as is the case here. The usual collisional
approach is however preferable if one wants to study the different bound electronic states that

can be formed by radiative association through a specific initial collision channel.

Since radiative association can occur towards any of the rovibrational levels of the inferior

Rad.Ass.
m—0

However, since the rotational dependence of the cross sections was neglected

state, its cross section o

Rad.Ass.
mJj'—ov"J"*

in the present study, we approximated the radiative association cross sections by summing the

is obtained by summing the contributions of all the rovibrational

levels o

cross sections for all vibrational levels multiplied by the corresponding number of rotational
levels. We compared our results with those obtained by neglecting the vibrational dependence
of the cross sections as well, which were obtained by multiplying the cross section for J” = 0,

v"" = 0 by the total number of rovibrational levels of the initial state.

We tested this method on a previously-studied case: the formation of HeH™ in its ground X
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Ethres:hold

Potential energy V

\J

Internuclear distance R

Figure 3.4: General diagram showing the photon energy Ej,, (red arrow) for a photodissociation
process from the lowest electronic state (lower black curve), the relative kinetic energy Ej (blue
arrow) for a collision process through the lowest excited channel (highest black curve), and the
corresponding photodissociation threshold energy (black arrow). The dotted lines denote the
zero of the two energy scales.

13+ state by radiative association of He™ (1s) and H(1s), i.e. through the A 'X* channel [135].
In order to do this, we first computed the partial photodissociation cross sections from each
bound vibrational level v” of the X !X* state through the A 'X* channel, then determined the
corresponding radiative association cross section by using Eq. 3.26.

Fig. 3.5 shows the results of these calculations. The dotted black curve represents the ra-
diative association cross section we obtained by neglecting the vibrational dependence of the
photodissociation cross sections, i.e. by assuming that the cross section obtained for the pho-
todissociation from the v” = 0 level is valid for the photodissociation from all excited vibrational
levels v” # 0. This is to be compared with the full black curve, which represents the radiative
association cross section we obtained by taking the vibrational dependence of the photodis-
sociation cross section into account. That result is in good agreement with that of the earlier
study by Kraemer et al. [135] (red dashed line). This demonstrates the important impact that
the vibrational dependence of the photodissociation cross sections has on the final result, es-
pecially at low collision energies. Additional tests for different values of J” found the rotational

dependence of the cross section to be very small in this case.
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Figure 3.5: Cross section for the radiative association of He* (1s) and H(1s) towards the ground X
13+ state through the A'X* channel, with (black full line) and without (black dotted line) taking
its vibrational dependence into account. The results are compared with those of Kraemer et al.
(1995) (red dashed line).

3.2.2.2 Radiative association rate constants

Knowing the radiative association cross sections, the corresponding rate constants can eas-
ily be determined. For a given relative velocity v, the velocity-specific rate constant is simply
given by the product of the velocity and of the corresponding radiative association rate con-
stant [136]:

k(v)y=va(). (3.28)

Of course, outside of specific experiments where the speed of incoming reactants is carefully
selected, reactions usually occur between a large number of reactants whose velocities follow a
statistical distribution. For the Maxwell-Boltzmann distribution, valid at thermal equilibrium,

the rate constant at a given temperature T is given by:

/ 8
kfnag’(/)\ss'(T) = m[ I:,?E:OASS'(E]C) Ey e BrlksT dEy. (3.29)
B

The following sections present the results we obtained for the a and b 3X* states of HeH*
(Section 3.3.1 and 3.3.2, p. 92 and p. 105 respectively) as well as the X 3II state of CO** (Sec-
tion 3.4, p. 109).

Q
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3.3 Photodissociation and radiative association of the triplet states of
HeH"

In this section, we discuss the computation of the photodissociation cross sections from
the a and b 3" states of HeH*, as well as of the radiative association cross sections towards
these two states. Although HeH™ is one of the simplest closed-shell diatomic ions in its ground
state, its nuclear dynamics in its excited states is far from trivial as they are strongly coupled by
nonadiabatic interactions.

Until Loreau et al. started studying the triplet states of HeH* [2-6], only its formation in its
singlet states had been considered in astrophysical contexts. Here, we study the possible for-
mation of HeH" in its two lowest 3X* states by radiative association (as well as its destruction
by photodissociation), as first started by Jérome Loreau during his Ph.D. thesis. We expand his
work in two directions, first by taking into account the full vibrational dependence of the pho-
todissociation cross sections of the a > state, and secondly by studying the photodissociation
and radiative association of the b 3 * state for all vibrational levels.

The b 3X" channel of HeH" indeed corresponds to an interesting couple of molecular frag-
ments: a proton HT, and a helium atom He in its metastable 1s2s 3S state, which has a lifetime
of about 8000 s. The b 3" state is therefore a very good candidate for the formation of HeH*
in a triplet state but, due to its very short radiative lifetime (7 = 1078 s [137]), it is expected to
quickly deexcitate towards the metastable a 3X™ state.

Thanks to its very long radiative lifetime (7 = 149 s for its lowest rovibrational level [3, 138]),
the a3Z* state is expected to play an important role in the astrochemistry of HeH*. Computing
the rates of formation and destruction of both the a and b 3X™ states is therefore crucial to the
comprehension of the astrochemistry of HeH* in its triplet states.

While the computation of the photodissociation cross section from the lowest rovibrational
level of the initial state is usually straightforward, the computation of individual cross sections
for each initial rovibrational level tends not only to be time-consuming (as a full propagation is
necessary for each v”, J” — v/, J' transition) but also to suffer from additional difficulties, mostly
stemming from the wider spatial distribution of the initial wavepacket and from the appearance
of centrifugal barriers in the excited states potentials for high values of J'. In the present work,
we neglect the rotational dependence of the photodissociation cross sections, as calculations
for large values of /T found its impact to be much smaller than that of " and since its correct
description would require an impractically high number of wavepacket propagations®.

All calculations were performed using the potential energy curves, nonadiabatic radial cou-
plings and dipole moments computed by Loreau et al. [2] as well as the vibrational wavefunc-

tions corresponding to the CBS-extrapolated potential energy curves we computed, as pre-

fUp to the largest values of J” corresponding to levels below the dissociation limit.

Por example, since the b33 state of HeH* supports a total of 1307 rovibrational levels, at least =~ 3900 individual
wavepacket propagation would be necessary to describe each possible v, J — v/, J' transition due to the J' =
J" +1,0 selection rule.
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sented in Chapter 2, p. 59. All ¥ and II triplet states up to n = 3 were included in our dynam-
ical calculations, i.e. 11 3=* and 6 311 states (shown on Fig. 2.2 on p. 55), as photodissociation
perpendicular to the laser polarization was shown to play an important role in the case of the
ground state [6].

We start by discussing the approach we used and the results we obtained for the b3X* state,
as its peculiarities make it a good example of the difficulties that may arise when computing
photodissociation cross sections from excited vibrational levels of an excited electronic state, as

well as of the need of combining two computation methods to obtain accurate results.

3.3.1 Results for the b3Z" state

All wavepacket propagations for the calculation of the photodissociation of the b 3Z* were
performed on a spatial grid of 2!3 points that spans from an internuclear distance Ry = 0.5 ag
up to Rmax = 200 ap. The use of along spatial grid was made necessary by the wide spatial spread
of the wavefunction of the highest initial vibrational levels. The Fourier transform for the com-
putation of the partial cross sections was performed at R,, = 175 ay, and we placed a quadratic
optical potential starting at R,ps = 180 ag in order to avoid reflections of the wavepacket at the
edge of the grid. Propagations up to 5 x 107 atomic units of time (1.2 ns) were performed, with
a timestep 0t of 1 a.u. for all 33 initial vibrational levels. Additional tests with shorter timesteps
were carried out to ensure accuracy.

The b3X* state exhibits properties which complicate the dynamics of its photodissociation:
it is close in energy to a large number of other electronic states, both bound and dissociative,
which are strongly coupled by nonadiabatic interactions. Moreover, its large number of vibra-
tional levels (33) also make it a good example of the importance of taking the vibrational depen-
dence of the photodissociation cross sections into account.

We ran into two difficulties in the course of our calculations: first, the presence of Gibbs
oscillations in some of our cross sections and secondly, the presence of resonances which we

could not adequately describe with the present approach.

3.3.1.1 Gibbs oscillations

Although it presents the advantage of yielding state-specific information, the method of cal-
culation of the partial cross sections developed by Balint-Kurti et al. suffers from an impor-
tant drawback: unlike the autocorrelation-based method, it only takes into account the parts
of the wavepacket that reach the asymptotic region of the dissociation channels and ignores its
trapped fractions as long as they stay in the potential energy wells. This should in principle be
a good thing, but it has an unfortunate consequence: the partial cross sections obtained with
this method often start abruptly at the threshold photodissociation energy and are thus affected
by the Gibbs phenomenon [139], which causes ringing artifacts around jump discontinuities in
Fourier transformes, as illustrated in Fig. 3.6.

Such Gibbs oscillations only appear if the cross section is non-negligible at the threshold

energy. The reflection principle allows for an intuitive understanding of the conditions under
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Figure 3.6: The Gibbs phenomenon leads to the appearance of discontinuities near the thresh-
old energy in the partial photodissociation cross section from the v = 2 level of the b 3z*
state towards the H* + He(1s2p 3p) fragments (full line, black), while the total cross section
as obtained through the Fourier transform of the autocorrelation function for short propaga-
tion times is perfectly smooth (dashed line). Thanks to this, the correct form of the partial cross
section can be deduced (full line, red).

which this will happen: the dissociation channel has to support a bound vibrational level, which
needs to be in a region where the wavefunction of the initial rovibrational level is non-negligible
(Fig. 3.7, cases (c) and (d)). This is more likely to be the case for excited vibrational levels because
of the wider spread of the wavefunction (Fig. 3.7, compare cases (b) and (d)). Despite this, the
cross section may not start abruptly at the threshold energy for certain specific values of v”
as one of the nodes of the wavefunction may coincide, through the reflection principle, with
the asymptotic energy of the dissociation channel (Fig. 3.7, case (e)). Whether or not Gibbs
oscillations appear thus depends on several factors: the topology of the potential energy curves,

their relative positions and the initial vibrational level.

The presence of such unphysical artifacts in the cross sections is particularly problematic in
our case: as mentioned in Section 3.2.2.1, the radiative association cross sections at low energy
are very sensitive to the value of the corresponding photodissociation cross sections near the
threshold energy, potentially leading to severely inaccurate radiative association rate constants

at low temperature if the ringing artifacts are not suppressed.

Although various filtering methods may be used to reduce these ringing artifacts [139], it is
generally impossible to suppress them completely. It is however possible to do so in the present

case using the total photodissociation cross section calculated from the autocorrelation func-
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Figure 3.7: Schematic illustration of various cases where the partial photodissociation cross sec-
tion o does not start abruptly at the threshold energy (a, b, e) and where it does (c, d), depending
on the shapes and relative position of the potential energy curves and on the initial rovibrational
level.

tion for short propagation times (Fig. 3.8): since it (incorrectly) describes predissociation as a
smooth envelope, no jump discontinuity occurs at the photodissociation threshold energy. It is
therefore unaffected by the Gibbs phenomenon (Fig. 3.6). As the sum of the partial cross sec-
tions must be equal to the total cross section in the energy ranges where it contains no contri-
bution from the incorrectly-described predissociation, the total cross section obtained for short
propagation times can thus be used as a reference to suppress the ringing artifacts in a given

partial cross section for a channel m:

SRy =0 = 5 OB 330

However, this is only possible if the ringing artifacts do not occur in the same range of en-
ergy for two different exit channels, as their respective contributions to the total cross sections
cannot be separated in that case. By combining the results of our computations of the partial
and total photodissociation cross sections, we were able to reduce or suppress the ringing arti-
facts near the threshold energy and to obtain the partial photodissociation cross sections from
the 33 vibrational levels of the b 3X™ state through the 15 other n = 2-3 32" and 3II dissociation
channels.

At least two calculations were therefore performed for each initial vibrational level v”: one
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with relatively long propagation times to obtain the partial cross sections through the method
of Balint-Kurti et al., and a shorter one to obtain the total cross section through the Fourier

transform of the autocorrelation function.
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Figure 3.8: Computed photodissociation cross section of the v = 5 level of the b 3X* state of
HeH" (black) through the H" + He(1s2p 3p9%) channel (red). The Fourier transform of the auto-
correlation not only yields the direct photodissociation cross section (green, full line), but also
a contribution from predissociation (green, dotted line) which incorrectly appears as uninter-
rupted at the threshold energy for short propagation times.

3.3.1.2 Resonances

Two types of resonances are encountered in the photodissociation cross sections of the b
33+ state of HeH": Feshbach resonances and Shape resonances (Fig. 3.9)". Unfortunately, our
present method of calculation makes their accurate calculation impossible, or at least unrea-
sonably time-consuming.

The Feshbach resonances are caused by the nonadiabatic crossing between a bound excited
state and a lower dissociation channel: trapped parts of the wavepacket move back and forth
in the potential energy well of the bound state until they nonadiabatically cross to the disso-
ciative channel, leading to the appearance of resonances in its cross section [141]. We chose to
neglect this kind of resonance completely in the present calculations: their exact determination

would have required impractically long propagation times in our approach, as a non-negligible

Another good example of a study where the two kind of resonances arise in the photodissociation cross sections
of a diatomic cation can be found in Ref. [140], for example.
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Figure 3.9: Example of situations leading to the appearance of resonances in the photodissoci-
ation cross sections. Left: the bound ¢ 3Z* state (red) is nonadiabatically coupled to the lower b
33+ state (blue), leading to the appearance of Feshbach resonances (dotted lines: corresponding
diabatic curves). Right: for certain values of J such as J = 80, the potential energy curve of the
b 3X* state exhibits a centrifugal barrier through which tunneling may occur, leading to Shape
resonances.

fraction of the initial wavepacket was still found in bound potential energy wells after propaga-
tion times as high as 50 x 10° a.u. of time (1.2 ns). Their computation using other approaches
would likewise have been very time-consuming due to the very large number of initial levels
to consider (1307). Moreover, their impact on the photodissociation rate constants is expected
to be small, as their asymmetric Fano profile would likely limit their net result upon integra-
tion of the cross sections to obtain the rate constants (Eq. 3.22). Since such resonances may
be more adequately described using partitioning techniques [142] or the time-independent for-
malism [143, 144], we chose to neglect them completely in our calculations.

The oscillations of the wavepacket in the potential energy well can easily be suppressed
when computing the total photodissociation cross section through the autocorrelation method
(for low values of v at least): their appearance occurs on a longer timescale than direct pho-
todissociation, as illustrated by the autocorrelation function in the case of the photodissociation
of the v” = 5 level (Fig. 3.10, black curve). The departure of the wavepackets from the Franck-
Condon region and the return of their trapped fractions occur on two distinct timescales and, if
the propagation is stopped before their return, the computed cross section shows no sign of res-

onances [126] and exhibits instead a smooth continuation of the cross section below the thresh-
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Figure 3.10: Autocorrelation function (arbitrary units) for the photodissociation of the v” =5
(black) and v”" = 15 (red) levels of the b 3=+ state through higher excited 3=* channels. In the
case of v"’ = 5, two different time scales can clearly be observed: direct photodissociation occurs
during the first 2000 a.u. of time, whereas the trapped fraction of the wavepacket comes back to
the Franck-Condon region after about 7000 a.u. of time. This is however not the case for v” = 15.

old energy. This can be understood intuitively as the autocorrelation function then contains
no information about the trapped fraction of the wavepacket and behaves as if the complete
wavepacket could directly reach the asymptotic region [141]. This smooth envelope gradually
disappears for longer propagation times as the Feshbach resonances appear in its stead. While
a resonance-free total cross section can easily be obtained for the first few vibrational levels
by using short propagation times, this is often not possible for higher vibrational levels as the
Franck-Condon region becomes wider, keeping the autocorrelation function from ever falling

to zero (Fig. 3.10, red curve).

Partial photodissociation cross sections free from Feshbach resonances can however often
be obtained by stopping the time propagation early enough, since the fraction of the wavepack-
ets that dissociates directly usually reaches the asymptotic region on a much shorter timescale
than the fraction that stays momentarily trapped in potential energy wells: the direct dissocia-

tion process and the nonadiabatic predissociation occur on two distinct timescales.

Shape resonances caused by tunneling through the centrifugal barriers are also expected
to appear for high values of J/, but the very large number (1307) of rovibrational levels of the
b 3z* state precluded us from computing individual cross sections for each of them as a full
wavepacket propagation would be necessary for each possible J” — J' = J” + 1 transition to-

wards other 327 states, as well as for each possible J” — J' = J”,J" + 1 transition towards 3II
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states. We therefore chose to completely neglect the rotational dependence of the cross sec-
tions, as its impact on the cross sections was shown to be smaller than that of the vibrational
dependence in the case of the X !X* state [6, 145]. However, although the envelopes of the
cross sections may not vary as significantly with /" as with v”, shape resonances have been
shown to significantly augment photodissociation and radiative association rate constants in
some systems, especially at low temperature [146, 147]. It is therefore common to compute the
envelope of the cross section through time-dependent methods without regards to shape res-
onances as their exact determination would require an impractically fine energy grid and long
propagation times. They can indeed be computed separately, e.g. through the Breit-Wigner
formalism [148, 149].

3.3.1.3 Photodissociation cross sections

As in the case of the photodissociation of the X 13+ state, we found the initial vibrational
level v” to have a very large impact on the resulting photodissociation cross sections, whereas
the impact of the initial rotational level J” was found to be much smaller. This is illustrated by
Fig. 3.11 and 3.12, which show the photodissociation cross sections from two of the lowest vibra-
tional levels of HeH™, and from the lowest and highest rotational levels of the lowest vibrational
level of HeH™, respectively.

As can be readily seen from Fig. 3.11, the initial vibrational level v dramatically affects the
photodissociation cross section: the v = 3 result is significantly different from the v" = 0 re-
sult. The impact of the vibrational excitation of the initial state on the photodissociation cross
sections is indeed twofold:

1. The nodal structure of the wavefunction directly affects the photodissociation cross sec-

tions (see for example Fig. 3.13 or compare panels (b) and (d) in Fig. 3.7, p. 94).

2. Moreover, the spread of the wavefunction towards high values of R tends to favor transi-
tions towards different excited channels.

Although not negligible, the influence of the initial rotational level J” is comparatively much
smaller, as shown in Fig. 3.12, which compares the results for /" = 0,15 and 73 within the v" =0
vibrational level. Moreover, the variation of the cross sections with increasing J” is very progres-
sive, unlike the dramatic changes observed whenever the initial vibrational level v’ is modified.
This can be attributed to the fact that the nodal structure of the wavefunction stays unchanged
when the value of J” is modified, within a given vibrational level v".

To give a broader overview of our results, Figures 3.13 and 3.14 show our total photodis-
sociation cross sections from several vibrational levels of the b 3X™ state towards the 9 higher
n =2-33%* states and towards the 6 n = 2-3 311 states, respectively. The corresponding partial
photodissociation cross sections were subsequently used to determine the radiative associa-
tion cross sections towards the b 3X* state for each excited channel. It is worth noting that the
cross sections for the photodissociation through the 3I1 channels are much larger than for the
photodissociation through the 3£* channels, confirming the large role played by perpendicu-

lar transitions in the destruction of HeH" by photodissociation, as previously reported for the
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ground X 1% state [6].
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Figure 3.11: Comparison between the total photodissociation cross sections from the v” =
0,7 = 0 and v” = 3,J" = 0 rovibrational levels of the b 3X" state through the higher n = 2-3
3%2* channels.
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Figure 3.12: Comparison between the total photodissociation cross sections from the v" =
0,7 =0; v" =0,J" =15 and v" = 0,]" = 73 rovibrational levels of the b 3X* state through the
higher n =2-3 32" channels.
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Figure 3.13: Total photodissociation cross sections from several vibrational levels of the b 3Z*
state through the higher n = 2-3 3=* channels.
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Figure 3.14: Total photodissociation cross sections from several vibrational levels of the b 3Z*
state through the n = 2-3 3II channels.
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3.3.1.4 Radiative association cross sections

Like the corresponding photodissociation cross sections, the radiative association cross sec-
tions towards the b 3X* state of HeH™ are found to change by several orders of magnitude when
their vibrational dependence is taken into account, as shown in Fig. 3.15 for three of the excited
channels. It is important to note that the radiative association cross sections at low energies
are highly sensitive to the corresponding photodissociation results near the threshold energy,
often requiring very long propagation time and correction of the Gibbs oscillations to properly
describe the low-energy components.

Radiative association cross section a(cm?)

Relative kinetic energy E, (eV)

Figure 3.15: Cross sections for the radiative association of He(1s3p 3P) + H' (black curves),
He' (1s2S) + H(2p 2P) (red curves), and He™ (15 2S) + H(2s 2S) (blue curves) towards the b 3X*
state of HeH™ with (full lines) and without (dashed lines) taking the vibrational dependence of
the cross sections into account. Note that the oscillations observed below 1072° cm? are caused
by numerical inaccuracies and have no physical sense.

3.3.1.5 Rate constants

Like in Roberge and Dalgarno’s study of the photodissociation of the X ! =* state of HeH", we
chose a ratio (R«/R)? of 107!3 (which corresponds to the physical conditions met in planetary
nebule such as NGC7027) to compute our photodissociation rate constants [25]. As previously
mentioned, the cross sections were assumed to be independent of J” (i.e. o j» = oy ji=g for
all J”). Fig. 3.16 shows our results as a function of the temperature of the central star T for dif-
ferent values of the temperature Ty;.g of the Maxwell-Boltzmann population distribution in the

rovibrational levels of the initial state. Like in all calculations of this kind, it should be noted that
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the photodissociation rate constants are likely to be underestimated at high blackbody temper-

ature due to the absence of excited states beyond 7 = 3 in our computational basis.
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Figure 3.16: Rate constants for the photodissociation of the b 3=+ state of HeH" through the
n =2-333" and 3I1 states as a function of the temperature T, of the blackbody, for the Maxwell-
Boltzmann distribution corresponding to different temperatures Ty;.g. The Ty = 2 K result,
for which only the v" =0, J” = 0 level is populated, is obtained for all Maxwell-Boltzmann dis-
tribution temperatures if the vibrational dependence of the cross section is neglected, as the
photodissociation cross sections for all v, J” levels are then assumed to be equal to the cross
section for the v =0, J” = 0" level.

Both photodissociation and radiative association rate constants are found to vary strongly
with the initial/final vibrational level v” considered. Qualitatively similar results are to be ex-
pected for other systems in which the photodissociation cross sections of the first vibrational
levels differ significantly near the threshold energy, which depends both on the shapes and on
the relative positions of the potential energy curves.

Our results indicate that the formation of HeH* in its b 3X* state by radiative association is
most likely to occur through the ¢ 3%* (He(1s2 p 3p) + HY) channel or through the a (He(1s2s
3P)+H") and y 3 (He(1s3p 3P) + H') channels.

102



3.3. Photodissociation cross sections of HeH™"

[N
~

N
o
T ERERTTTTT ERTTTTT ERTTTT MERTTTT EERTTTT EERTTTT EERTTTT MERTTTT EERTTTT EERTITT EERTTTT A

=
S o
&

l_\
Q
&

[N
g

l_\
o

=
S o 9o
5 &

N
[y

'_\
S
N

= e
S o
&8

N
N

'_\
S

.4 . g -1
Radiative association rate constants (cm®s™)

H
QS
&

T T T T T T T T
2000 4000 6000 8000 10000

Maxwell-Boltzmann distribution temperature (K)

o

Figure 3.17: Rate constants for the radiative association of He(1s3p 3p) + H* (black curves),
He' (1s2S) + H(2p 2P) (red curves), and He" (15 2S) + H(2s 2S) (blue curves) towards the b 3X"
state of HeH* through the 33+ channels with (full lines) and without (dashed lines) taking the
vibrational dependence of the cross sections into account.
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Figure 3.18: Rate constants for the formation of HeH" in its b 3" state by radiative association
through the n = 2-3 3X* channels. State designation follows the convention given in Table 2.1
(p. 57).
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Figure 3.19: Rate constants for the formation of HeH" in its b 3X* state by radiative association
through the n = 2-3 3II channels. State designation follows the convention given in Table 2.2
(p- 58)
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3.3.2 Results for the a 3 state

By comparison to the b 3Z* state, calculations for the a 3Z* are relatively simple and
straightforward. The a 3X* only possesses 6 bound vibrational levels for J” = 0, significantly
reducing the number of required wavepacket propagations.

Most calculations were performed on a spatial grid of 2!3 points spanning from an inter-
nuclear distance Ry = 0.5 ap up to Rpax = 100 ay. The partial cross sections were calculated
at R = 75 ap and a complex absorbing potential starting at R,,s = 80 ay was used. These pa-
rameters were however modified for the highest vibrational level, v”’ = 5, due to the wider spatial
spread of its wavefunction: the partial cross sections were calculated at R, = 100 ag and we used
a quadratic optical potential ranging from R,ps = 120 gy to the end of the grid, at Rmax = 150 ap.

As in the case of the b 3Z* state, propagations up to 5 x 107 atomic units of time (1.2 ns)
were performed, with a timestep 6t of 1 a.u. Tests with shorter timesteps were carried out to
ensure accuracy. The same approach as before was used to suppress the Gibbs oscillations and

to obtain resonance-free partial cross sections.
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Figure 3.20: Total photodissociation cross sections from several vibrational levels of the a 3"
state through the higher n = 2-3 3=* channels.

Figures 3.20 and 3.21 show the photodissociation cross sections from the a 3<* towards the
n =2-3 33" and 311 states, respectively. Even though the a 3X* state of HeH™ has significantly
less bound vibrational levels than the b 3X* state for J” = 0 (6 instead of 33), the impact of the
vibrational dependence of the photodissociation cross sections on the corresponding radiative
association cross sections and on the rate constants is far from negligible, although it is com-
paratively small for the b 3=+ (He(1s2s 3S) + H") channel. Figure 3.22 shows the radiative as-

sociation cross sections towards the a 3X* states from the first three higher 33+ channels, with
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and without taking the vibrational dependence into account.
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Figure 3.21: Total photodissociation cross sections from several vibrational levels of the a 3X*
state through the n = 2-3 3II channels.
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106



3.3. Photodissociation cross sections of HeH™"
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Figure 3.23: Rate constants for the photodissociation of the a 3=+ state of HeH" through the
n =2-333" and 311 states as a function of the temperature T of the blackbody, for the Maxwell-
Boltzmann distribution corresponding to different temperatures Ty;.5. The Ty = 2 K result,
for which only the v” =0, J” = 0 level is populated, is obtained for all Maxwell-Boltzmann dis-
tribution temperatures if the vibrational dependence of the cross section is neglected, as the
photodissociation cross sections for all v, J” levels are then assumed to be equal to the cross
section for the v" =0, J" = 0" level.

Figures 3.24 and 3.25 respectively show our computed rate constants for the radiative asso-
ciation from the n = 2-3 32" and 3II states of HeH" towards its a 32" state. In the 3=+ symmetry,
the highest rate constant at all temperature is that of the formation through the b 3Z* channel,
i.e. the collision of H* and metastable helium He(1s2s 3S). Even higher rate coefficients have
however been obtained for the radiative association through the two lowest 311 channels, a and
B, which correspond to the collisions He(1s2s 3P) + H" and He™ (15 2S) + H(2p 2 P), respectively.

On the basis of these results, J. Loreau proposed a rough estimate of the abundances of
HeH™ in planetary nebule. Despite the higher rate constants observed for some of the IT chan-
nels, the formation of HeH" in its a 3X™ state is more likely to occur through the b 3X* by radia-
tive association of metastable helium He(1s2s3S) and a proton H*, due to the high abundances
of these species in nebula. In this context, the quantity of HeH" in its a 3X* state assuming
equilibrium between its formation by radiative association and its destruction by photodissoci-

ation is given by the relation:

Phot. Rad. Ass.
NHeH" (a 32+) ka 33+_, 33+ 311 = MHe(1s2s3S) N+ kb 33+, g 33+ (3.31)
where:

~ NpeH*(a35+) MHe(1s2s 35) and nyy+ are the densities of HeH* in its a >X* state, of helium in
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its 1525 3S metastable state and of protons, respectively.

- kg%‘g;_, 83+ 3] is the photodissociation rate constant of the a 3X* state.
Rad. Ass.

- kb 33+ g3zt

a 32" through the b 3Z* channel.

is the radiative association rate constant for the formation of HeH?" in its

In order to compute 7yep+ (4 35+), We use values of these parameters corresponding to the
conditions encountered in a typical planetary nebula: ny+ = 107* cm?, nye+ = 103 cm™3,
T, =5x10* Kand Ty = 10* K [150]. To compute the density of metastable helium Nife(1525 3S)»
we use a formula derived by Clegg which depends on the ionized helium density ny,+, the elec-
tron density and the temperature [151]. With our chosen set of parameters, this leads to an
approximate value of i (1525 35) ~ 4 x 1073 cm™3.

Using our computed rate constants, we obtain an estimated density of HeH" in its lowest
triplet state of nyepy+ (4 33+ of approximately 3 x 1071 cm~3, which is much lower than the esti-
mated density of HeH" in its ground X !X state [30]. The presence of a non-negligible quantity
of helium in its triplet states in planetary nebulae can nonetheless influence the abundances of
neutral and ionized hydrogen and helium. Moreover, the formation of HeH" in its a 3= * state
may have occurred in the early universe, since neutral helium was first formed by the recombi-

nation of He* with an electron, populating its metastable 1525 3S state among others [27,138].
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Figure 3.24: Rate constants for the formation of HeH" in its a 3X* state by radiative association
through the n = 2-3 3" channels. State designation follows the convention given in Table 2.1
(p. 57).
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Figure 3.25: Rate constants for the formation of HeH" in its @ 3X* state by radiative association
through the n = 2-3 3II channels. State designation follows the convention given in Table 2.1
(p. 57).

3.4 Photodissociation cross sections of CO**

Unlike HeH", CO?" only has one long-lived vibrational level in its ground X 311 state. Only
one set of partial photodissociation cross sections was thus calculated, that characterizes the
photodissociation from the v" = 0 level of the X 3I1 state towards the first eleven 32~ states. This
makes the computation very straightforward compared to the case of HeH™, especially since no
bound excited electronic state is involved here.

The propagations were performed on a spatial grid of 2! points spanning from an internu-
clear distance Rpyin = 1.5 ap up to Rmax = 100 ay. The computation of the partial cross sections
was based on the value of the wavepacket at Ry, = 50 ay and the start of the complex absorb-
ing potential was chosen as R = 80 a,. Propagations up to 10° atomic units of time (2.42 x 1074
ns) were performed, with a timestep 6t of 1 a.u. Propagations with shorter timesteps were also
carried out to ensure accuracy.

Fig. 3.26 shows our computed partial cross sections. The respect of the reflection principle
is much less obvious here than in the case of HeH™", most likely due to the very sharp slope and
somewhat “bumpy” shape of the potential energy curves of the excited states in the Franck-
Condon region.

As in the case of HeH™, the sum of the partial cross sections obtained with the method of
Balint-Kurti et al. was compared with the total cross section as computed through the autocor-

relation method, with a timestep 6¢ = 0.1 a.u. and a total propagation time of 1000 a.u. Fig. 3.28
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shows the resulting autocorrelation function. The total cross section as computed through the
autocorrelation function and the sum of the partial cross sections as computed through the

method of Balint-Kurti et al. were found to be in perfect agreement.
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Figure 3.26: Partial photodissociation cross sections from the v” = 0 level of the X 3IT state of
CO?* through its 11 lowest 32~ channels. State designation follows the convention given in
Table 2.6 (p. 69).

The comparison with our v”, J” = 0 results for the a and b states of HeH* is however in-
teresting. Since the 3I1 —3 X~ transition dipole moments of CO?>" are much smaller than the
33 * -3 3" transition dipole moments of HeH", the associated photodissociation cross sections
are much smaller too. The photodissociation process is also found to occur on a much shorter
timescale than for HeH": the wavepacket leaves the Franck-Condon region in less than 10% a.u.
of time and reaches R = 50 gy in less than 10* a.u.). This quick dissociation can be attributed to
the absence of bound or quasibound excited states, as well as to the fact that the potential en-
ergy curves of the excited states of CO?* have much sharper slopes in the Franck-Condon region
than those of HeH™, leading to higher momenta for the excited wavepacket (as seen in Fig. 3.28,
the wavepacket completely leaves the Franck-Condon region in about 1000 a.u. of time).

Of particular interest to us is the photodissociation cross section towards the ninth 3X~ state,
which dissociates into C?* + O instead of C™ + O, as it is the target of our laser control simula-
tions presented in Chapter 4. Our computed cross section for that channel is very small (see the
red curve on Figs. 3.26 and 3.27) and several other channels have a higher cross section in that
energy range. This is both due to the fact that the potential energy curves of the excited states
are very close to each other in the Franck-Condon region (as seen earlier in Fig. 2.12, p. 72) and

to the fact that the nonadiabatic couplings cause numerous nonradiative transition between
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Figure 3.27: Total photodissociation cross section from the v”’ = 0 level of the X 31 state of CO?*
through its 11 lowest 32~ channels (black curve), and partial photodissociation cross section
through the 9" 32~ state (red curve), which is the first to dissociate into C>* + O instead of C* +
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Figure 3.28: Autocorrelation function (arbitrary units) for the photodissociation of the v" = 0
level of the X 31 state of CO?* through the first 11 excited X~ channels.
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Chapter 3. Field-free dynamics

the different channels in the course of the photodissociation process.

As a consequence, a laser with a wavelength corresponding to that energy range would
therefore mainly lead to dissociation through the C* + O* channels. In order to significantly
dissociate CO?* through the C>* + O channel instead, a more refined approach is therefore nec-
essary: in the following chapter of this work, we theoretically optimize laser fields that guide the

photodissociation dynamics of CO?* and HeH" towards specific selected channels.
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CHAPTER

4

LASER CONTROL OF PHOTODISSOCIATION
REACTIONS

In this chapter, we take the study of the dynamics of photodissociation reactions one step
further by actively controlling these processes through the use of laser fields. We start by a gen-
eral introduction on the laser control of chemical processes (Section 4.1, p. 114) before present-

ing the two methodologies we used to theoretically optimize efficient laser pulses:

— Local Control Theory (Section 4.1.2, p. 116), and more specifically a recently-developed

Local Control approach based on the use of Moller operators (as detailed on p. 118).

— Optimal Control Theory (Section 4.1.3, p. 122).

In both approaches, we take a step towards the theoretical determination of “realistic”,
experimentally-feasible pulses by including additional constraints in the optimization process.
We more specifically introduce a new kind of constraint that minimizes the total area of the
electric field, whose implementation is detailed on p. 120 for Local Control and on p. 131 for

Optimal Control. We then expose the results we obtained for our two test systems:

— The control of the photodissociation of the X ! X* state of HeH* through its higher-excited
13+ channels (Section 4.3, p. 133).

— The control of the photodissociation of the X 31 state of CO?* through its 3=~ channels
(Section 4.4, p. 147).

All calculations presented in this chapter and the following were performed on the comput-

ing cluster of the ThéoSim group (Laboratoire de Chimie Physique, Université Paris-Sud), using
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Chapter 4. Laser control

codes previously developed by members of that research group which we modified and adapted
to suit our needs.

Note: in this work, expressions such as “control field”, “control pulse”, “optimized field”, etc. will
often be used to refer to the electric part of the electromagnetic field used to control the reaction

dynamics.

4.1 Introduction to the laser control of chemical processes

Controlling the behaviour of chemical compounds has been one of the cornerstones of
chemistry since its inception, be it through the choice of appropriate reactants, solvents and
catalysts, or through the choice of appropriate physical conditions, such as pressure and tem-
perature. Laser control goes beyond these traditional and macroscopic means of influencing
the course of chemical reactions by allowing direct, microscopic control of molecular energy
level populations through the use of a laser field.

Lasers indeed produce coherent light whose intensity and spectral range can be fine-tuned,
making them ideal tools not only to measure the properties of molecules and to probe their
dynamical behaviour, but also to influence the course of their dynamics, allowing for the quan-
tum control of chemical processes. Thanks to the development of ultrashort laser sources and
of the associated pulse shaping technologies, lasers can now be used not only to populate non-
thermal states of a molecule (i.e. states which are inaccessible when energy is supplied to
molecules in the form of heat), but also to influence the populations of the energy levels of
a molecule throughout the course of a chemical reaction, thus influencing its final product(s)
and yield.

Controlling the behaviour of molecules through the use of lasers is not a trivial task, but it
is usually motivated by several factors. First and foremost, looking for the best ways to con-
trol chemical processes often leads to new insights into their dynamics and into the underlying
physical phenomena. Secondly, laser control has many potential applications in various fields,
such as quantum information (and in particular the use of trapped atoms and molecules as
“quantum computers”, which will be detailed in Chapter 5), microscopy [152, 153], biomedical
functional imaging [154] and the highly-selective detection of chemical compounds [155, 156],

to name only a few.

4.1.1 Control strategies: overview

The general strategy of laser control is straightforward: its aim is to tailor an external electric
field E(¢) in order to guide the evolution of the system from an initial state |¥;) to a final state
I'¥ ¢). Both theoretical and experimental approaches have been developed in order to achieve
this goal.

Experimentally, the control of chemical reactions can be implemented using Adaptive Feed-

back Control (AFC), an empirical approach to the optimization of the control field that relies on
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a feedback loop [157]. The effect of a trial laser pulse on the system is first assessed, then fed
into a genetic algorithm that slightly modifies the pulse shape in an attempt to maximize the
desired physical quantity. Through repeated experiments, the pulse is progressively optimized
on the basis of the measured results, until the desired objective is satisfactorily reached [158].

This kind of approach is very efficient as it allows the quick optimization of experimentally-
efficient laser pulses without requiring accurate computations of the properties of the molecule.
However, in order to understand the underlying mechanism and gain insight into the subtleties
of the dynamics, ab initio calculations are often required (as illustrated for example by the 2003
study of Daniel et al. [159, 160]). Moreover, this approach requires easy measurement of the
physical quantity one wants to optimize, which is not always possible: we will for example see
in Chapter 5 (p. 157) that molecular quantum computing relies on laser pulses which place
molecules in specific superpositions of states — superpositions which cannot easily be mea-
sured, as direct measurement would lead to the collapse of the wavefunction'.

In this kind of case, a theoretical determination of the control pulse is necessary. Although
fields optimized theoretically are often not experimentally feasible today or as efficient in prac-
tice as in the simulations (e.g. because of inaccuracies in the ab initio data), theoretical simula-
tions have played and still play an important role in the development of quantum control [162].
As noted by Brif et al., “the practical laboratory relevance of theoretical designs depends on the
complexity of the system of interest, with simpler cases yielding theoretical models closer to real-
ity”: since quantum control strategies are usually very sensitive to the properties of the system,
such as the shape of the potential energy curves of surfaces, theoretical results obtained for
complex polyatomic molecules are likely to be further from reality than those obtained for di-
atomic systems [14].

In cases where one only wants to transfer population from one molecular state to another,
very simple pulses can be used. The simplest approach is probably the use of n-pulses, i.e.
laser pulses that have a total area of 7 under their envelope and whose frequency correspond
to a resonant transition between the initial state and the target state. Regardless of their shape,
pulses that meet these two conditions indeed lead to a total population transfer from one state
to another [163].

Another relatively simple and efficient approach is Stimulated Raman Adiabatic Passage, or
STIRAP, which allows for efficient population transfer towards states that are not accessible by
one-photon transitions. It consists in transferring population from the initial state to the desired
state through an intermediary state by using two off-resonance laser pulses: a “Stokes” laser is
first used to couple the intermediary state and the target state, then a “pump” laser transfers
population from the initial to the target state [164, 165].

However, the aim of quantum control is often more complex than simply ensuring a pop-
ulation transfer from a single state to another. Moreover, unwanted transitions towards other

states may occur and significantly decrease the efficiency of such simple approaches.

TNote however that indirect measurement of quantum systems that preserve state superpositions is not physically
impossible, as illustrated for example by Ref. [161].
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To determine control fields in those cases, two main theoretical approaches coexist: Local
Control, in which the field is optimized at each timestep based on the instantaneous dynamics
of the system, and Optimal Control, in which the field is optimized iteratively based on the
entire dynamics from its start #; to a final time ¢¢. Both approaches were used in this work and

are detailed and compared in the following pages'.

4.1.2 Local Control Theory

Local Control Theory (LCT) was first formulated in 1992 as a way to determine control fields
which would excite molecular systems into specific states while preventing population transfers
to other states [166,167]. Its philosophy is simple: for each timestep ¢ of the dynamics, the value
that the control field E(¢) should take in order to maximize (or minimize) the expectation value
(Oy of an observable O is computed [168].

Let us briefly derivate the expression of the Local Control field. First, the Hamiltonian H(¢)

of the system is defined as:

H(t) = Hy+ W (1), (4.1

where Hj is the Hamiltonian of the field-free system and W () is the time-dependent perturba-
tion which will influence its dynamics. In the cases studied here, we will guide the dynamics of
molecular systems through their electric dipole interaction with the electric field E(t) of a laser

pulse:

W(t) = —pE(2), (4.2)

where p is the projection of the dipole operator on the polarization vector of the laser field.

As always, the time-dependent Schrédinger equation for our system is:

0
ihEI‘I’(tD =H(@)[Y(1)). (4.3)

Our aim in controlling the system can be broadly defined as maximizing (or minimizing)
the expectation value of a particular operator O. To achieve this, Local Control will endeavor to
maximize or minimize its time derivative [169]:

9 _d (YDI0¥(1) (4.4)
dt dt ' '

By applying the Ehrenfest theorem (i.e. replacing the time derivative of ¥ with its expression
from the time-dependent Schrédinger equation (Eq. 4.3)), we obtain:

a0y i

00
ar E(‘P(t)l[H,O]I‘I’(l‘)>+(‘l’(t)|§I‘I’(t)>- (4.5)

TFor further details, the 2010 review of the state of the art in quantum control by Brif ez al. provides an interesting
overview of the history of laser control and of its applications [14].
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Replacing the Hamiltonian by its expression given in Eq. 4.1 allows the dependence of (O)
with the electric field E(¢) to become more apparent:
d{oy i i 00
—— ==Y [Ho, O1¥Y(2)) — —E@® V()| [, O Y (£)) + V(D) — I (2)). (4.6)
dt h ) ot
If i%O = [Hy, O] (which is the case if O does not depend explicitly on time) and if Hy and

O commute’, the first and last terms disappear and we obtain the general equation on which

Local Control strategies are based:

1750,
dat

We see indeed in this expression that, provided the operators ¢ and O do not commute, the

= —%E(l‘) (Y[, O1¥ (1)) . 4.7)

electric field E(f) can be used to influence the time evolution of (O), e.g. to gradually minimize
or maximize its value.

Let us now derive the appropriate form of E(¢) for a concrete case. If the aim of the control
is to populate a specific molecular energy state ¢;, O could be defined as the corresponding

projector:
O=P;
=i (il (4.8)
or as a sum of such projectors if the aim is to maximize the populations of several states at once.
By replacing O by this expression in Eq. 4.7 and developing the commutator, we obtain:

d<o>—_£E(t)(\P(I)|[ O] ¥ (1)) @9
dt — h g |

= —— E(0) V()| 1O 1¥ (1) = (¥ ()| O ¥ (1))

=~ EO( V@110 il W (0) = V(0] ) il 119 (1))

=~ B0 (V01 plgn) @ V(0 ~ (il W) (0]l ) ).

Since the difference between a complex number z and its complex conjugate z* yields

2 1 Z(z) (where Z(z) is the imaginary part of z), Eq. 4.9 can be rewritten as:

a0y 2
= = =L EO Z((Y 0|l (0 1 (0)
2
=~ B(1) (w01 po1¥ (1) ). (4.10)

It is thus possible to ensure a monotonous increase (or decrease) of (O) by defining the field
E(t) as [166,169]:

TThat s to say, if the expectation value of O is a constant of motion.

117



Chapter 4. Laser control

E() = £A Z((¥ (0] w01 (1)) ) 4.11)

where A is a positive constant or a positive function of time which scales the intensity of the
control field E(t).

Local Control Theory usually yields control fields that are relatively simple and easy to in-
terpret in terms of the successive state transitions they cause. While this simplicity implies they
may be easier to implement experimentally than more complex fields such as those obtained

using Optimal Control Theory, they are also often much less efficient.

4.1.2.1 Local Control Theory using Moller Operators

The main drawback of Local Control is a direct consequence of its philosophy: since the
control field is determined for each timestep based on the instantaneous dynamic of the sys-
tem, it does not take into account phenomena which may occur later in the dynamics. Nona-
diabatic interactions may for example populate or depopulate the target state non-radiatively
in the course of the dynamics. Attempts at maximizing the population of either adiabatic or
diabatic states with Local Control in systems where nonadiabatic couplings strongly influence
the dynamics are therefore unlikely to be very successful.

Moreover, the field-free molecular Hamiltonian Hy does not commute with projectors on
adiabatic or diabatic states P; = |¢;) (¢ ;| in the presence of nonadiabatic couplings: as a result,
the first term of Eq. 4.7 is not equal to zero. While its neglect was found to still lead to meaningful
results in two-state systems with a well-localized coupling [170, 171], this was found not to be
the case in a strongly-coupled system such as HeH™ [43].

In order to solve this problem and go one step further than conventional Local Control The-
ory, Prof. Meier (LCAR-IRSAMC, Université Paul Sabatier) developed, in collaboration with Uni-
versité Paris-Sud’s LCP, a variant of Local Control based on Magller Operators which takes the full
dynamics into account to determine the control field [43]. Its basic idea is simple: in the con-
text of photodissociation, the aim is not to maximize the population of specific electronic states
throughout the whole dissociation process but to maximize the formation of specific fragments.
It therefore makes more sense to define the target operator O as a scattering projector PJS.C (or as

a sum of scattering projectors) correlated with the desired exit channel(s):

Py = f 67 (1) ($] (p)] dp, (4.12)

where |(/)]_.) is an outgoing scattering state with momentum p which correlates with the frag-
ments associated to the dissociation of electronic state j. Unlike projectors on adiabatic or
diabatic states, scattering projectors commute with the field-free Hamiltonian, allowing for the
LCT approach to be used to maximize their expectation value even in cases with strong nonadi-
abatic couplings. However, the calculation of the scattering states usually is a very difficult task
as it requires solving the multi-channel problem for all scattering energies. In a time-dependent

approach, this can however be circumvented by computing them through the use of Moller op-
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erators Q< [172-174], which are defined as:

Q; — thl;n elHl’/he—lemgl‘/h, (413)
—xT00

where H is the full molecular Hamiltonian and Hy¢,4g is the Hamiltonian of the fragments for
very large internuclear distances R = oo, where all nonadiabatic couplings have vanished. Using

the appropriate Moller operator, a scattering state I(,b]_. (p)) can be written as:

I (p)) =Q-1j,p)

= lim e'f!/M g~ Hyragt/h lj,p. (4.14)

t—0co
where | ], p) = e'PR/ V27 is an outgoing plane wave in channel j with energy p?/2m.

By following the same reasoning as in Egs. 4.9 to 4.11, we obtain the expression of the Local
Control field which ensures a monotonous increase of the population of the selected scattering
states:

E(f) = +A I(f lim QP17 1, ) G, ple ™ u e ) dp). (4.15)

In order to compute it, we proceed in the following way:

1. At each timestep ¢ for which we want to determine the control field E(¢), the wavepacket
| (1)) and the promoted wavepacket u|W(¢)) are propagated from time 7 to time #’, up to

the asymptotic region (“R = o0”, i.e. beyond the interaction region).

2. Their Fourier Transform is computed in order to obtain the momentum distribution in
every dissociation channel j, which is then used to determine the control field through

Equation 4.15.

This approach was shown to go beyond conventional Local Control strategies by taking into
account the effect of nonadiabatic transitions as they occur later in the dynamics [43]. Con-
cretely, this leads for example to control fields that can temporarily transfer population out of
a target state and into an unwanted state (which would be impossible in a conventional Local
Control approach), provided this leads to a higher final population in the desired dissociation
channel at the end of the dynamics. The original study by Bomble et al. for example features a
control field that transfers population from a target state to an unwanted one, to take advantage
of the effect of a nonadiabatic transition that transfers population back to the desired dissocia-
tion channel later in the dynamics [43].

However, this Moller operator-based approach is slower than conventional Local Control, as
full propagations of the wavepackets up to the asymptotic region are required for each timestep
t. Indeed, for each step ¢ for which we want to determine our control field E(¢), a full propaga-
tion is necessary from time ¢ to time ¢’ so that the asymptotic wavepackets |¥(¢)) and u[¥ (1))
can be found and used to determine the value of E(?) at time ¢. These propagations thankfully
become shorter and shorter throughout the calculation, as ¢ gradually increases and becomes

closer to t'. Additionally, these field-free propagations from ¢ to ¢’ can be realized with a longer
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timestep Otgee than the one used for the determination of the field E(t), which needs to be very

small to ensure accuracy.

4.1.2.2 Zero-area constraint in Local Control

Bomble et al. first applied the Moller-operator based Local Control approach to the pho-
todissociation of HeH" [43], using the ab initio data previously computed by Loreau et al. [2]:
the large role that the nonadiabatic couplings play in the photodissociation dynamics of HeH*
make it an ideal test case for this method.

However, one of the fields Bomble et al. optimized suffers from a common but often-ignored
problem: its time-integrated area is not equal to zero, as can be seen in Fig. 4.1. This is experi-
mentally unrealistic for a laser pulse, since Maxwell’s equations require the time-integrated area
of a freely propagating electromagnetic pulse to be strictly equal to zero (a problem which was
first raised in the context of control using “half-cycle pulses” [175-177]). A short demonstration
of where this stems from is given in the Appendix on page 193, which can intuitively be summed
up as such: a laser pulse can be thought of as a superposition of monochromatic sine waves,
whose individual time-integrated areas are all strictly equal to zero. Its area should therefore be

equal to zero too.

0.06 . ; . ; . ; . ; . ;

0.04 -

0.02

0.00

Electric field (a.u.)

-0.02

-0.04 +

-0.06 . ; . , . ; . ; . ; .
0 4 8 12 16 20 24

Time (fs)

Figure 4.1: Local Control field guiding the photodissociation of HeH" towards the He + H* frag-
ments through its !=* channels, recomputed using the same ab initio data and parameters as
Bomble et al. [43]. The time-integrated area of the field is visibly not equal to zero due to a
non-oscillating, “Stark” contribution (that can most easily be seen after 12 fs). This case will be
studied in detail in Section 4.3.1 (p. 135).

Although this is not always so obvious to the naked eye, many other theoretically-optimized
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fields published in the literature have a non-zero area, with only few authors acknowledging this
problem’.

The case of the control of the photodissociation of HeH™" led us to consider these optimized
electric fields as being composed of two contributions: an oscillating part with zero area associ-
ated to an electromagnetic pulse, and a non-oscillating part caused by a non-periodical electric
field, as can for example be created by applying an electric tension between two conducting
plates. We dubbed this part of our electric fields the “Stark contribution” due to its presumed
effect on the energies of the eigenstates of the molecular systems we consider. Although the
control of reactions using both laser pulses and static electric fields could constitute an inter-
esting area of research, we chose to focus here on the electromagnetic part of our optimized
pulses and to suppress the “Stark” contribution as much as possible.

In order to do so, we worked in collaboration with the group of Prof. Sugny (Laboratoire
Interdisciplinaire Carnot de Bourgogne of the Université de Bourgogne) in order to implement
constraints that minimize the area of the field in both Local Control and Optimal Control The-
ory. As a general rule of thumb, optimizing a control field with additional constraints is indeed
generally more efficient than applying the constraints on the field after its optimization [179]:
it seems therefore preferable to optimize a field with the area constraint than trying to modify
it, post-optimization, to bring its area as close to zero as possible. In order to implement the
zero-area constraint in Local Control, Prof. Sugny proposed to add a term penalizing the area of
the field to the cost functional V() [180]:

V(5) = (¥(0)] O|¥ (1) — VA1), (4.16)

where v is a positive parameter that weighs the area constraint and where A(%) is the area of the

electric field E(¢) at a given time £, e.g.:

t
A() :f E(?) dt. (4.17)
0

In other words, instead of simply maximizing (W (z)| O|W(£)), the aim of this method is to
both maximize (¥(¢)| O|¥(#)) and minimize vA(#)? in order to obtain the highest value of V(z)
possible. Note that A(t) is squared to avoid favouring negative values of the area and in order
to lead to a simple expression of the electric field E(#). To find that expression, we indeed write
the time derivative of V(f), which yields a result very similar to Eq. 4.4, differing only by the
appearance of the area penalty term:

av(r) i
ar —%E(I) (WOl [, O (2)) —2vA() E(2). (4.18)

This thus leads to the presence of an additional —2vA(¢) E(t) term in the expression of the

control field E(¢), which we can generally express as:

fSee for example Ref. [178], whose authors write: “we note that the electric field in Fig. 8 does not strictly fulfill
the condition of a time integral which is equal to zero. This might be fixed by introducing a new constraint on the
electric field, at the risk of making the calculation unfeasible due to slow convergence’.
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E(r) = Mt)((‘l’(t)l i[u, Ol (1)) —2vA(t)). (4.19)

Note however that, in this formulation, the constraint does not minimize the global area of
the field A(ty) but minimizes, at each timestep ¢, its area up to that particular time A(t).

Using this strategy, we present in Section 4.3.1 (p. 135) the first fields optimized in Local
Control with a constraint on the area [180].

4.1.3 Optimal Control Theory

Optimal Control Theory (OCT) is a general method to optimize the value of a given “per-
formance index” while respecting a set of constraints, with very wide-ranging applications in
various fields of science and engineering. Although it finds its root in the calculus of variation,
the paternity of Optimal Control as it is used today is generally attributed to Soviet mathemati-
cian Lev Pontryagin [181]".

The basic philosophy of Optimal Control is to optimize the value of a functional j(¢) that
can broadly be defined as [162]:

J(t) = Objective — Constraints. (4.20)

The first step is thus the mathematical definition of what constitutes our “objective” and of the
constraints that need to be respected. Once this is done, solving the control problem amounts
to finding a way to maximize the functional /() — but instead of achieving this by imposing the
sign of its time derivative 8//dt, like in Local Control, Optimal Control will focus on maximizing
its final value at a given time 7.

In this work, we focus on the application of Optimal Control Theory to the optimization of
laser control fields that guide the dynamics of molecular processes towards specific goals while
respecting predefined constraints [183]. Our work is based on the form of the functional first
defined by Zhu et al. [184]:

J = Objective — Cineensity — Cschrod.» (4.21)
o1, more accurately,
2 I 2
J=[¥plgp| —fo a () |E(0)|” dt

iy 0
_273(<\P(tf)|¢f>f0 A=+ ih(Hy = pE) ¥ (1) d, (4.22)

where the first term is the objective, the second is a constraint on the intensity of the field and
the third is a constraint imposing the respect of the time-dependent Schrodinger equation at

each timestep. Let us look at these terms one at a time.

TFor the curious, a 1996 article attempts at tracing back the roots of Optimal Control Theory and shows that things
are not so clear-cut [182].
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4.1.3.1 Objective

Asin Local Control, our aim can be generalized as the maximization of the expectation value
of an operator O. However, this time, our aim is not to maximize its value at each timestep ¢ but

only its final value at time #y:

(O, = (¥ (2| O (1)) (4.23)

If our aim is to maximize the final population of a given state ¢ ¢, the appropriate operator

O is the corresponding projection operator [¢ ) (¢ -

Objective = (¥ (17)[pr) (Pl W (Ef))
=[wplep]’, (4.24)

which is the expression used by Zhu et al. [184], among many others. In this case, the func-
tional J will be maximal when the wavefunction ¥ () at time ¢y is strictly equal to the target
wavefunction ¢, i.e. when the system has reached the desired state.

Note that the way the objective is defined is very important, as the form of the control field

depends on it.

4.1.3.2 Constraint on the intensity

Special care must be taken to prevent the control field E(¢) from reaching exceedingly high
values at any point ¢ in time: the higher limit is usually fixed at 0.05 a.u., i.e. around 2.57 x 101°
V-m~! [7]%. This is achieved through the second term of Eq. 4.22, the constraint on the field

intensity, whose expression is rather straightforward:

Iy
CIntensity = _[) a(r) |E(t)|2 dt, (4.25)

where a(t) is a parameter that modulates the intensity of the control field. It is usually defined as
a constant ag or as a constant multiplied by an envelope s(#), that ensures a smooth beginning
and ending of the field:

a(n =2 (4.26)

The envelope s(¢) is equal to 0 for £ = 0 and ¢ = ¢, and smoothly raises up to 1 in the interval,
so that the constraint @(¢) on the intensity is maximal at the beginning and the end of the pulse

to ensure that E(f = 0) = E(¢f) = 0. Its most widely-used form is that of a sine-squared envelope:

s(t) = sin® (ni) . 4.27)
Ly

TNote that tests with stricter constraints indicate that the results presented in this work should stay qualitatively
correct for much lower field intensities, albeit with reduced values of the objectives.
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However, although such an envelope guarantees a very smooth start and end of the pulse,
it is known to limit the window during which the field can reach reasonably high amplitudes,
as shown in Fig. 4.2. This has a similar effect to limiting the duration of the pulse and can lead
to very high field amplitudes at ¢ = 17/2, as this is the only time where the envelope is equal to
unity [185]. To get around this, we occasionally use in this work a modified envelope that begins
and ends smoothly like a sine-squared envelope in a certain amount of time f;pe, but that is

strictly equal to 1 in-between:

sin® (n ) for 0<t< Line,
Lsine
s(f)=4 1 for fsne<t< L — Isine, (4.28)
. 9 ( =1 ) ‘
SN~ | T—— Or ff—lgine<t=<TIr.
2 tf— fsine f ~ lsine f

A comparison between the two envelopes for ¢ = 2000, fine = 400 a.u. of time is given in
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Figure 4.2: Sine-squared (black) and modified sine-squared (red) envelopes s(t) that ensure a
smooth start and end of the optimized pulses.

4.1.3.3 Constraint on the respect of the Schrédinger equation

Finally, the third and last term of Eq. 4.22 ensures that the time-dependent Schédinger equa-
tion is verified throughout the dynamics:

l’f a
Cschrod. = —ZR((\P(tf)Hbf)](; (ﬂ(t)|E+ih(H0—/vtE(t))|‘I’(t)) dt|, (4.29)

where A(t) can be regarded as a Lagrange multiplier ensuring the respect of the Schrodinger
equation, and where the term (¥ (¢7)|¢ ) in front of the integral was introduced by Zhu et al. to
decouple the boundary conditions of the equations obtained in the subsequent development

(Egs. 4.31 and 4.33) [184]. ‘R denotes the real part of the expression that follows between brack-
ets.
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Note that, as in the case of Local Control, the Hamiltonian H has been expressed as the sum
of the field-free Hamiltonian Hj of the molecular system and of its electric dipole interaction
—1E(t) with the electric component of the laser field (Egs. 4.1 and 4.2, p. 116).

4.1.3.4 Derivation of the coupled equations

Now that each term of Eq. 4.22 has been examined, we can look for the expression of E()
that will maximize the functional J. That functional depends on three functions: A(#), ¥ (¢) and
E(1). To find the optima of J, let us thus write the derivatives 6 J,,8 Jy and 6 Jg, and impose that
they must be equal to zero [186]:

6Ja=JIAD +6A(D), ¥ (1), E(D] - JIAD), ¥ (1), E(D)] (4.30)

Iy 0
:—ZR((‘I’(tf)l(bf}fO (5/1(If)|a+ih(H0—/JE(t))|‘I’(t))dt .

Since 0 A(¥) is arbitrary, 6 J will be equal to zero if:

0
ih— I¥(0)) = (Ho ~ HE() ¥ (D). (4.31)

In other words, the wavefunction W(¢) of the system must respect the time-dependent
Schrodinger equation for all times ¢. The boundary condition is given by the initial state ¢;
of the system: W (¢ = 0) = ¢;.

Similarly, writing 6 Jy and injecting Eq. 4.31 in the resulting expression yields:
6w = JIA(D), ¥ (1) + 6%, E(0)] — JIA(2), ¥ (1), E(1)] (4.32)
i
=2R [(‘I’(tf)l Oy (<(l>f| o) _fo ADIin(Ho — LE(1)) 16'P) dt” )

which leads to the following condition:

0
ih& IA(8)) = (Hy — pE(1)) [A(D)), (4.33)

i.e. A(t) must respect the Schrédinger equation, with the boundary condition A(T) = ¢ .
Finally, imposing 6 /i = 0 leads to the third condition:

6] =JIA®), ¥ (1), E(t) + S E] - JIA(1), ¥ (1), E(1)] (4.34)

&y
= —2[0 [a(DE() +2Z (P (D] pp) (A ¥ (1))] SE dt.

This leads to the expression of the control field E(#):

1
E() =~ — S T{(PWOIAD) AW ¥ (1)) (4.35)

TThe detailed development can for example be found in Ref. [186].
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Any control field E(¢) that satisfies Egs. 4.31, 4.33 and 4.35 at once is a locally optimal solu-

tion to the control problem [184].

4.1.3.5 Optimization of the control field

Two algorithms are commonly used to solve this set of coupled nonlinear equations: the
Krotov algorithm [187,188] and the Rabitz (or Zhu-Rabitz) algorithm [184]. In this work, we use
the latter, which ensures a monotonic increase’ of the objective as a function of the number of
iterations. In addition to the obvious (such as the relevant ab initio data, a value for parameters

such as ay, ...), the algorithm requires the following physical quantities to be known:

— The total duration of the pulse ;.

The initial wavefunction W (¢ = 0).

The desired final wavefunction ¢ ¢ at time 7.

A trial control field E© (1), that serves as an “initial guess” for the algorithm to start with.

The algorithm begins by a preparation phase, that is followed by the repetition of two steps
at each iteration:

Preparation phase: backward propagation with the trial field

— Using the trial field E O (p), the wavepacket AW (p) is propagated backward in time using
Eq. 4.33, starting from the boundary condition A% (z) = ¢

ih% AV (1)) = (Hy — uE® (0) 1AV (1)) . (4.36)

First phase of each iteration: forward propagations

- Since AW (t=0)and YV (r=0) = ¢; are now both known, they can be used to determine
a new control field E%V (¢ = 0) using Eq. 4.35:

1
Dy = — @ @ @ 1)
EY (1) = a(t)I((‘I’ (DIA @A (O Y (t))). (4.37)

— Using this new control field EV(¢), the wavefunction WV () can be propagated forward
in time from the boundary condition ¥ (t = 0) = ¢»; up to tf using Eq. 4.31:

m% WO (1) = (Hy - nEV (0) 1wV (1)) . (4.38)

— Step by step, both EV(¢) and WV (¢) are thus determined from time 7 =0 to 7.

Ti.e. for each iteration, the objective increases or, at worst, stays constant.
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Second phase of each iteration: backward propagations

— Since we now know WY () from time 7 = 0 to tf, we can use it with 1@ (tf) =¢rto deter-

mine a new field E® (¢) using Eq. 4.35:

E@ (1) = —ﬁz( DDA 1) AP 01 1w (1))). (4.39)

— Using this new control field E @ (1), the wavefunction ¥ (1) can be propagated backward
in time from the boundary condition A® (¢ = t¢) = ¢y up to t = 0 using Eq. 4.31:

iha% A@ (1)) = (Hy - kB2 (1) 12 (1)), (4.40)

— Step by step, both E @ (f) and 1@ (1) are thus determined from time ¢ = tf to to.

Repeated iterations and convergence

— Once the second phase of an iteration is complete, the first phase of the next iteration
begins with the indices of the wavefunctions A(#), ¥(¢) and of the control field E(t) incre-
mented respectively by 1 and by 2: for the second iteration, A(#)® replaces A(r)V, ¥ (£)V
is renamed W (1)® and E® (1) replaces E(¢) in the above summary.

— The efficiency of the optimized pulse is assessed by computing the objective, as previously

shown in Eq. 4.24:

Objective = [(¥ ™ (zp)lp )|, (4.41)

where the index 7 is the number of the most recent iteration. The iterative optimization
is performed until the desired value of the objective is reached (which may be higher than

99% for applications in quantum computing, as will be discussed in Chapter 5).

— Instead of computing a completely new control field E” (¢) at each step of each iteration,
we use a method first proposed by Palao et al. in which the field as given in Eq. 4.37
and 4.39 is treated as a correction AE"/(¢) to its value at the previous step E”~V(¢) [189]:

EW )= E" V() +AEY (p). (4.42)

This method allows the control field to keep a “memory” of its earlier values (and in par-

ticular of the trial field E©®) and can prevent it from becoming too intense [189].

4.1.3.6 Multi-target Optimal Control Theory

The development we have shown so far is valid if our aim is simply to maximize a transfer

of population from an initial state ¢»; towards a final state ¢ at time ¢ = #7. However, if our aim

127



Chapter 4. Laser control

to optimize transitions from N initial states (/)i.C towards N final states (/);i at once, a multi-target
approach is necessary. This will be of particular importance in Chapter 5, where the aim is to
implement quantum logic gates that can operate on any initial state or any initial state super-
position, which requires simultaneously controlling the transitions from several initial states to

several final states.
In this aim, a form of the functional J generalized to the multi-target case has been devel-
oped, with Eq. 4.22 taking the following generalized form [190]:

J—iﬁjw (7)] ’C>|2—ftf (1) |E(P dt
_Nk:1 k(Lf (Pf A a

N ty a
—2y R(<‘Pk(tf)| </>ji>f0 A0 5+ iR (Ho = PE(D) I (0) dt | (4.43)
k=1

Using the same kind of development as in Section 4.1.3.4 leads to 2N + 1 coupled equa-
tions instead of just three. The first 2N equations impose the respect of the time-dependent

Schrédinger equation for the wavefunctions W (¢) and A(¢) of all N states:

0
iﬁa |Wi(2)) = (Ho — LE() ¥k (D)), (4.44)

0
iha [Ak(D)) = (Hy — LE(1)) [Ax (D)), (4.45)

with k = 1,2,..., N, and with the boundary conditions W (¢t = 0) = ([)i.C and Ay (tf) = (,b;i. Finally,
the 2N + 1)h equation gives the generalized form of the control field [191]:

1 N
E(D) = =~ D I[ W01 A (0) Qe 0l p ¥1(0) ). (4.46)

)%
The performance of the optimized control field can be assessed at each iteration by com-

puting the corresponding objective as shown in the first term of Eq. 4.43:
: 1 k|2
Objective= — Y ’(\I’k(tf)l(,bf) . (4.47)
N o

Note however that in the case of quantum computation, simply optimizing a series of tran-
sitions from initial to final states is often not sufficient: the relative phases of the states have
to be controlled too, as will be discussed in Section 5.2.1.3, p. 177. Let us simply state for now
that in such cases, another form of the objective, which takes the phase into account, may be
used [189,192,193]:

2

Objective = . (4.48)

1| & k
~ k; (Pr(tp)l o)
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This, in turn, modifies the expression of the control field E(¢):

1 N N
E()=———=T| Y (eI Ae(0) ) (A Wi (1)) ]. (4.49)
a® \% k

4.1.3.7 Comparison with Local Control Theory

Since both Local Control and Optimal Control Theory are used in this work, let us briefly

highlight the main differences between the two approaches:

— Whereas Local Control approaches compute the value of the control field E(#) that maxi-
mizes the value of an observable O at each timestep t based on the instantaneous dynamic
of the system, Optimal Control Theory looks at the dynamics as a whole in order to maxi-

mize the value of O at the final time t5.

— Another difference between Local Control and Optimal Control is that the former ap-
proach yields a control field from ¢ = 0 up to potentially very long times, as long as tran-
sitions that increase the objective can still occur (in our case, until the wavepacket has
completely left the initial state), while the latter is an iterative procedure which requires
the choice of a final time #; prior to the start of the calculation. In this context, having
performed a field-free propagation is very useful as it gives an estimate of the relevant

timespan for the control field.

— Unlike Local Control schemes, Optimal Control requires an initial “guess” pulse'. Better
results (or at least faster convergence towards a high-fidelity pulse) are of course obtained
if the guess pulse is chosen in a physically sensible way: its spectrum should ideally al-
ready contain the frequencies corresponding to the desired transitions. In this work, two
kind of initial guess pulses are tested and compared: Gaussian pulses with carrier fre-
quencies corresponding to the desired transition(s), and pulses optimized by Local Con-

trol Theory.

One of the reasons why Optimal Control Theory leads to better results than Local Control
Theory is quite intuitive. The best way to maximize a given observable at a time 77 is not nec-
essarily to try to maximize its value at each intermediary timestep: it is instead preferable to
take a look at the bigger picture and to maximize its final value only, even if it means allowing
temporary diminutions of the observable.

For example, in the case of systems where nonadiabatic couplings play an important role

in the dynamics, trying to maximize the population of the target state at each timestep is not

fNote however that, to provide a starting point to the Local Control algorithm as presented here, we promote a
very small fraction of the vibrational wavefunction of the initial state to the excited channels. This is a purely
numerical “trick” to get the algorithm started that does not modify the final result, as was verified by simulating
the photodissociation dynamics in presence of our optimized fields with the photodissociation code used in
Chapter 3.
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the best way to go, since non-radiative transitions are likely to depopulate it later in the dynam-
ics. However, by considering the dynamics as a whole, such nonadiabatic interactions may be
taken advantage of, by temporarily populating state whose population is later transferred nona-
diabatically to the target state, for example. As noted in Section 4.1.2.1, Mgller operator-based
Local Control already takes one step in that direction, but Optimal Control is more flexible as it
allows the inclusion of constraints on the properties of the field as defined on the chosen time
interval as a whole. Depending on the nature of the problem and on the exact definition of the
objective, it may indeed be necessary to include additional constraints in the cost functional.

In this work, we use two additional constraints: a constraint that limits the fluence of the
optimized pulses (Section 4.1.3.8) and a new constraint that minimizes their total area (Sec-
tion 4.1.3.9, p. 131).

4.1.3.8 Constraint on the fluence

Unlike Local Control Theory, Optimal Control Theory optimizes the field as a whole, from
the beginning to the end of its duration. This allows the minimization of the fluence of the
control field, defined as':

Iy
F:f |E(1)|? dt. (4.50)

12}
Instead of adding a new constraint term to the functional J, the fluence of the control field
can simply be adjusted to a given value Fj at each iteration by defining the parameter aq in
Eq. 4.26 (p. 123) not as a constant, but as a variable factor that gets recalculated at each step n

of each iteration so that the fluence of the field always stays equal to Fj [194,195]:

I 2
ol = fto |[E™ (1)
0 \ R

_|E" 4.51)
V& _

where E" () and F" are the control field at step n and its fluence, respectively.

Note that setting a fixed value for the fluence does not necessarily prevent the electric field
from punctually reaching high values: since the fluence is the result of a time integration of
|E(2)|? from t = 0 to tf, high values of E(f) can still be attained for certain times ¢, provided
they are compensated by lower values on the rest of the time interval 7. However, comparing
different fields with the same fluence can be useful to assert their “efficiency” for a given amount

of energy, even if their peak intensity and their duration are different.

fNote that this definition of the fluence is the one that is commonly used in quantum control (“the time-integrated
intensity”, as put by Werschnik and Gross [194]), but that experimentalists may be more used to defining the
“fluence” of a laser pulse as its amount of energy per unit of surface area.
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4.1.3.9 Zero-area constraint in Optimal Control

Similarly to what we showed in Section 4.1.2.2 (p. 120) for Local Control theory, a constraint
on the total (time-integrated) area of the field can be added in the field optimization through
Optimal Control Theory. As in Local Control Theory, this constraint was first formulated by Prof.
Sugny, who presented the first implementation of this constraint in Optimal Control Theory in
our 2013 paper [180] (in which we presented its first implementation in Local Control Theory).

The approach is similar to that used in Local Control Theory. First, the area of the field is
defined as:

Iy
A:f E(t) dt. (4.52)
0

Note that, unlike in the case of Local Control Theory, the area A of the field is now computed for
the whole duration of the field, from ¢ =0 to 7 = ¢7 (compare with Eq. 4.17, p. 121). Using this
definition of the area, an additional constraint term penalizing high field areas, Carea, is added

to the cost functional J:

Carea = _VAZ, (4.53)

where v is a parameter that modulates the weight of the area constraint. The fact that A is
squared in this expression ensures that both positive and negative field areas are penalized and

leads to the appearance of a simple term in the new expression of the control field [180]:

1
E() = —mz( WMD) A1) | -2vA (4.54)

Unlike in the Local Control approach, where only the area of the field up to the considered
timestep is taken into account, this constraint takes into account the area of the field as a whole.
This makes the constraint a bit less strict than in Local Control, where we will see that it tends
to “stifle” the field intensity by trying to minimize its area at each timestep .

Note however that, unlike in Local Control theory, this approach might not necessarily sup-
press Stark contributions to the trial field: it might instead lead to the appearance of additional
Stark contributions of opposite sign, thus ensuring that the global area is equal to zero while
still failing to make the pulse physically realistic. It therefore seems preferable to suppress low-

frequency contributions in the trial field before optimizing it with Optimal Control Theory.

4.2 Model used in our control simulations

These calculations presented in this work were performed under the following assumptions:
— Due to the short duration of the pulses (compared to the rotational period), the frozen ro-

tation approximation is used [179]. The molecules are assumed to be pre-aligned with re-

spect to the laser pulse so that the desired kind of transitions occur: for HeH*, we optimize
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parallel, 1=+ — !X* transitions while for CO?*, we optimize perpendicular, 3IT — 3Z~

transitions.
— The electric field is defined as real, which corresponds to a fixed polarization.

— The molecules we study, HeH* and CO?*, are assumed to initially be in their lowest pos-

sible energy state: the v”, J” = 0 level of their ground adiabatic electronic state.

— Like our field-free calculations in Chapter 3, the dynamics are performed in the diabatic

representation.

The time propagation were carried out using the Split-Operator method, previously de-
scribed for time-independent Hamiltonians in Section 3.1.1, p. 79. However, since the Hamilto-
nian is now time-dependent due to the inclusion of the interaction with the electric field —uE(1),

the time-evolution operator for a small step 4t given in Eq. 3.6 (p. 79) becomes [6]:

—iVSt iuE(dt —iVet —iTét —iVSt iuE(Hdt —iVét
Ult,t+0t)=e 4h e 2 ¢ 4h e h e 4h e 2 e 4h | (4.55)

inE(D)6t
where the term e 21 is built by diagonalizing the transition moment matrix u one time
for the whole calculation, then by multiplying its eigenvalues by the appropriate value of the
electric field E(¢) at each timestep t. Note that E(?) is assumed to be constant on each small time
interval 6¢. The timestep 6¢ therefore needs to be even smaller than for field-free propagations
to ensure good accuracy. Its value was fixed to 0.05 a.u. (= 1.21 x 1073 fs) for all time-dependent
calculations presented in this chapter.

As in most quantum control studies, the efficiency of our optimized pulses is assessed by
measuring the objective or fidelity, i.e. the final population in the target channels. For conve-
nience, we will express it in % (that is to say, the percentage of the total population that has been
transferred to the desired channels).

However, another interesting criterion to assess the quality of our optimized pulses is that
of selectivity, as the objective alone does not tell the full picture. Compare for example two

situations:

1. A pulse which leads to very high populations not only in the target channels, but also in

the other, unwanted channels.

2. A pulse which leads to low populations in the target channels and to very low populations

in unwanted channels, while leaving most of the population in the initial state.

The objective will be much higher in the former case than in the latter, as it is defined as
the sum of the populations in the target channels at the final time 77. However, if one wants to
photodissociate the molecule into particular channels preferentially, the latter situation seems

preferable as it strongly favors the dissociation in the desired channels: even if a large fraction
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of the population is left in the initial state, repetition of the optimized pulse may lead to total
dissociation if necessary.
To assess the selectivity of our pulse, we simply compute the ratio between the final popu-

lations in the target channels and in the other dissociation channels:

Ntarget Nothers
Selectivity = ) P target Di others» (4.56)
i=1 i=1

where pij target and p; others are the populations at time ¢y in the target channels and in the other
dissociation channels, respectively, and where 7iarget and nghers are the corresponding number
of dissociation channels. Note that the final population of the initial state is not taken into
account in that calculation.

In addition, we use two physical quantities that were first proposed by Sugny et al. to assess
the effect of the area constraint on the optimized fields [180]:

Y Ewar
[TEw@ a
Iy Bue(n) dt
" Eyoc(8) dt’

norm

(4.57)

Bnorm =

where Ey(1) is the field optimized with a constraint on the area (v # 0) and Eyc(t) is the field
optimized without constraint on the area (v = 0). Aporm can be seen as the “normalized” area of
a given pulse, while Byory is the ratio between the areas of two pulses obtained with and without
constraint on the area (all other parameters being kept equal). Appropriate choices of the area

constraint v are expected to lead to low values of both Aporm and Bporm-

4.3 Laser control of the photodissociation of HeH*

Building on the work started by Bomble et al. [43], we focused on one of the specific cases
presented in their seminal paper': the photodissociation of the X '=* state of HeH* into the
fragments H™ + He(1s2s 'S) or H + He(1s2p ' P), which corresponds to its third and sixth 1>+
channels respectively (states B and E in the notation used in Table 2.1, p. 57).

We used the same ab initio data as Bomble et al. in all calculations [43]: the potential en-
ergy curves, transition dipole moments and nonadiabatic couplings of the six lowest !=* states
of HeH* computed by Loreau et al. [2], expressed on a spatial grid of 23 points ranging from
Rimin = 0.1 ag t0 Riyax = 100.0 ap.

The scattering projector (Eq. 4.12) was defined as a projector on the scattering states corre-

lating with the dissociation of the third and sixth !=* electronic states of the molecule:

Pils6= 2. f ¢ (p)) (& (p)] dp. (4.58)

j=36

fCase B of the original article.
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Accordingly, the selectivity was defined as:

Selectivity = pg+ qe / PH+He*

I+ Iy+
=Yp" /X p (4.59)

i=3,6 i=2,4,5

where py+,pe and py.ye+ are the populations in the dissociating channels leading to fragments

th 1z+

H* + He and H + He", respectively, and where pi.y is the population in the i channel at

time Iy

As in that earlier study, HeH" is initially assumed to be in the v, J” = 0 level of its X 1Z*
state. The partial cross sections for the X !X — 1=* photodissociation of HeH* computed by
Sodoga et al. [6] were reproduced in this work in order to determine the corresponding radiative
association and rate constants (Fig. 3.5, p. 90). We show in Fig. 4.3 the partial photodissociation
cross sections from the v”, J” = 0 level of the X '=* towards the higher 'X* channels, as they

will help in the interpretation of our control fields.
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Figure 4.3: Partial photodissociation cross sections from the v” = 0 level of the X X7 state of
HeH™ through its 5 lowest !X excited channels. State designation follows the convention given
in Table 2.1 (p. 57). In this chapter, our aim will be to enhance the photodissociation in the B
and E channels (blue and red curves, respectively).

To facilitate the comparison between our different results, a summary of the properties of

our most efficient optimized pulses will be given in Table 4.3, p. 146.
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4.3. Laser control of the photodissociation of HeH*

4.3.1 Local Control of HeH"

Our Local Control calculations were performed with the same parameters as Bomble et
al. [43]: a short timestep 6t = 0.05 a.u. of time for the determination of the laser field, a longer
timestep Ofgee = 0.2 a.u. for the field-free propagations, and an intensity parameter A = 4.2.
Only the value of the constraint v on the area of the field was modified from one calculation to
the next.

We first reproduced the field obtained by Bomble et al. [43] by using the exact same param-
eters, with v = 0 (i.e. no constraint on the area). The resulting field has already been shown
in Fig. 4.1 (p. 120). As we have seen, although this control field leads to a reasonable objective
(given the low values of the transition dipole moments and the complexity of the dynamics),
it suffers from a fundamental flaw: its total area is not equal to zero, spurring our search for
zero-area fields.

In a first step, we tried to suppress the non-oscillating “Stark” part of the field to measure its
impact on the objective. We then computed new fields by adding a constraint on both its area
(to ensure it is as close to zero as possible) and its fluence (to prevent the field from becoming

too intense).

4.3.1.1 Suppression of “Stark” contributions

In a first attempt to get rid of the Stark contribution, we tried computing local averages of
the field intensity and substracting them from the field itself in the hope of averaging out the
oscillations and finding the Stark contribution as a baseline. Since this led to a mitigated result
and to a sharp drop in the field’s efficiency, we however looked for more efficient alternatives.

We realized it was much simpler to compute the Fourier Transform of the control field and to
remove its “low”-frequency components’, as the “Stark” contributions correspond to frequen-
cies much lower than the oscillating, “electromagnetic” part of the control field.

By separating the “low-” and “high-"frequency components in Fourier space then perform-
ing an inverse Fourier transform on the resulting two pulses, we were able to perfectly split the
original computed field into a purely “Stark” field and a purely “oscillating” laser field (Fig. 4.5).

The objective corresponding to the version of the field without Stark component was how-
ever found to have fallen from 8.55 % to 4.48 %, while its normalized area Anorm went from
6.39 x 107 to —3.59 x 10~*. However, interestingly, the final population diminishes even more
in the unwanted dissociation channels than in the target H" + He channels, leading to an aug-

mentation of the selectivity pg+ ,ge/ Pa+met from 1.07 to 1.24.

TThe use of the words “low-” and “high-"frequency is purely relative.
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Figure 4.4: Fourier Transform of the LCT pulse optimized by Bomble et al. We split it into two
components: the low-frequency, Stark contribution (red curve) and the high-frequency, oscil-
lating contribution (blue curve).
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Figure 4.5: The local Control Field optimized by Bomble et al. with parameters A =4.2, v =0
(upper panel, black curve) can be separated into a low frequency “Stark” contribution (upper

panel, red curve) and an oscillating part (lower panel, blue curve) by filtering its Fourier trans-
form.

4.3.1.2 Effect of the area constraint

While simply removing the “Stark” contribution to the control field led to a very sharp drop
in its total area, it left room for improvement. Even fields which do not contain a low-frequency
contribution obvious to the naked eye indeed often have a non-zero area.

We computed the Local Control field for several values of the area constraint parameter v in
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order to assess its effect both on the fidelity and on the appearance of the Stark contributions.
The intensity parameter A was kept constant for all computations and equal to 4.2, as in the

original calculation of Bomble et al.

Fig. 4.6 shows the fields obtained for v = 0,v = 0.05 and v = 0.10 as well as the corresponding
objectives. As can be seen to the naked eye, augmenting the value of the area constraint v leads
to a progressive diminution of the “Stark” contribution to the field and to a diminution of its

total area.

However, high values of v also diminish the field intensity and lead to very reduced values
of the objective (from 8.55% for v = 0 to 4.75% for v = 0.10). This diminution of the intensity can
be attributed to the fact that the area constraint minimizes the area A(¢) for each timestep t as
the field is being constructed, preventing its value E(¢) from becoming too high at any point in
time. The diminution of the objective with increasing v is both a consequence of the lower field

intensities and of the progressive disappearance of the “Stark” component.
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Figure 4.6: Upper panel: LCT-optimized fields for the control of the photodissociation of HeH™,

obtained with parameters A = 4.2 and v = 0 (black curve), v = 0.05 (red curve) and v = 0.10 (blue
curve). Lower panel: Corresponding objectives as a function of time.

Unfortunately, even for high values of v, the “Stark” component does not disappear com-
pletely. In order to completely remove it from our optimized fields, we filtered their low-
frequency contributions, as previously done for the v = 0 case. Fig. 4.7 shows the resulting fil-
tered fields and the corresponding objectives. Comparing Fig. 4.7 and 4.6, we see once again
that the objectives are diminished by the removal of the “Stark” component. However, this

diminution becomes smaller as v increases, from a factor 1.91 for v = 0 to a factor 1.39 for
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v =0.10": since the constraint on the area partly prevents the appearance of the “Stark” compo-

nent, the effect of its removal on the objective becomes less marked for high values of v.
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Figure 4.7: Upper panel: LCT-optimized fields for the control of the photodissociation of HeH™,

obtained with parameters A = 4.2 and v = 0 (black curve), v = 0.05 (red curve) and v = 0.10 (blue

curve), after removal of their “Stark” component. Lower panel: Corresponding objectives as a
function of time. Results are shown on the same scale as in Fig. 4.6.

It is interesting to compare the effect that the constraint v and the removal of the “Stark”
components have on the area of the optimized fields. Fig. 4.8 shows the values of Apom and
Bnorm for our optimized pulses as a function of v, before (upper panel) and after (lower panel)
removal of their low-frequency, “Stark” component. The evolution of Aporm and Bporm as a func-
tion of v is not monotonic: the best correction is obtained around v = 0.08, which leads to a
value of Bnorm that is almost equal to zero. The efficiency of the area constraint in Local Con-
trol cannot be denied, however, finding the optimal value of the constraint v that minimizes the
area requires several calculations.

Moreover, comparing the upper and lower panels of Fig. 4.8 shows that filtering the low-
frequency contributions of the optimized fields is much more efficient at reducing their area
than the use of the constraint v in the present case. Strangely enough, the fields optimized with
high values of v actually have a higher area than their v = 0 counterparts after filtering, although
their area is so small that these differences may not be significant.

It is also worth noting that the inclusion of a constraint on the area (v # 0) and the sup-

pression of the “Stark” components of the fields both lead to a non-monotonic evolution of the

fThe ratios between the objectives before and after filtering are given by: 8.55%/4.48% = 1.91 for v = 0, and
4.75%/3.41% = 1.39 for v = 0.10.
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objective as a function of time, as illustrated by the lower panels of Figs. 4.6 and 4.7.
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Figure 4.8: Aporm and Bporm (see Eq. 4.57) of our LCT-optimized pulses for the photodissocia-
tion of HeH™ as a function of the area constraint v. Upper panel: Results for the original fields
(Fig. 4.6). Lower panel: Results after removal of the “Stark” components (Fig. 4.7).

4.3.2 Optimal Control of HeH"

As mentioned in Section 4.1.3 (p. 122), the optimization of laser fields using Optimal Control
Theory requires the selection of a total duration ¢y for the control process and of an “initial
guess” field which serves as a starting point for the algorithm. In this work, we used two kinds
of initial guess: the Local Control fields described in the previous section and Gaussian pulses
with frequencies corresponding to those of the Franck-Condon transitions towards the target
states.

The duration of the optimized pulses was chosen to be a bit longer than the Local Control
field: 77 = 1638.4 a.u. of time, i.e. ~ 40 fs. All calculation where therefore performed from 7 =0

to ¢ = 1638.4 a.u. with a time step 67 = 0.05 a.u. of time.

4.3.2.1 OCT of HeH" using Gaussian pulses as trial fields
Preliminary tests with Gaussian pulses, without optimization
We performed simple control tests using Gaussian pulses, since their area is equal zero and

since they can easily be created experimentally. The carrier frequency of our test pulses were

chosen to correspond to a Franck-Condon transition from the initial state to the target states.
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Two series of calculations were performed: one with a fixed maximum value (E(#)pax = 0.05
a.u.) of the pulses and one with a fixed fluence equal to that of the v = 0 LCT field after removal
of its “Stark” component (F = 0.06 a.u.).

For each series, three type of pulses were tried: a single Gaussian whose carrier frequency
corresponds to a resonant transition from state X 13+ to state B '=* (Ej, = 1.2097 hartree =
32.92 eV), a Gaussian pulse whose carrier frequency corresponds to a transition towards state E
13* (Eyy = 1.3803 hartree = 37.56 eV), and a sum of two such pulses. Fig. 4.9 shows the corre-

sponding pulses while Table 4.1 shows the results of these calculations.
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Figure 4.9: Four of the Gaussian pulses used as initial guess in our OCT calculations for the pho-
todissociation of HeH*, corresponding to resonant transitions towards the B 'X™ state (upper
panel) or the B and E ' =+ states (lower panel), with a predefined peak value E(f)nay = 0.05 a.u.
(black curves) or a predefined fluence F = 0.06 a.u. (red curves).

Using resonant Gaussian pulses with a predefined peak value E(f)max = 0.05 a.u. as the only
constraint leads to relatively high objectives: up to 13.77%, as illustrated by the left column of
Table 4.1. Interestingly, using the sum of two resonant Gaussian pulse instead of one does not
increase the objective but actually leads to as significant decrease due to interference effects.

These results may appear better than those obtained using Local Control Theory, since the
objectives are significantly higher. The comparison of pulses that have different durations and
intensity is however uneasy: it is well-known that longer and more intense pulses lead to better
results than short weaker ones. In order to facilitate the comparison, we chose to compare fields
with the same fluence F (as defined in Eq. 4.50).

When we impose their maximum value E(#)nax = 0.05 a.u., the Gaussian pulses indeed have

a much higher fluence than our Local Control pulse (F = 0.40 a.u. in contrast to = 0.06a.u.).
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Table 4.1: Objectives for the control of the photodissociation of HeH* using resonant Gaussian
pulses with a predefined peak value E(f)max = 0.05 a.u. or a predefined fluence F = 0.06 a.u.

E(f)max =0.05a.u. F=0.06a.u.

Gaussiany_.g 13.77 % 2.37%
Gaussiany_g 11.77 % 1.56 %
Gaussiansy_.p g 6.82 % 2.04 %

Imposing a fixed fluence Fy = 0.06 a.u. for the Gaussian pulses leads to a very sharp decrease of
the objective, as seen in the right column of Table 4.1. For a given amount of energy provided
by a laser, the Local Control pulse therefore achieves significantly higher objectives than simple
Gaussian pulses. Moreover, the selectivity of the Gaussian pulses is lower than that of our Local

Control pulses (on the order of = 0.7 instead of = 1.2 for v = 0).

OCT using Gaussian pulses as initial guess

A series of OCT calculations were performed using these Gaussian pulses as initial guesses,
with fixed fluence Fy = 0.06 a.u. The corresponding values of the objective after 100 iterations
are given in Table 4.2. As can readily be seen, the highest objectives are obtained for the trial
pulses that themselves led to the highest objective. No constraint on the area was used for this
series of calculation, as the objective was found to raise very little from one iteration to another

even for v =0.

Table 4.2: Objectives obtained after 100 OCT iterations with a fixed fluence Fy = 0.06 a.u. for the
control of the photodissociation of HeH* using Gaussian pulses as initial guess.

Objective after 100 iterations

Gaussiany_. g 5.21%
Gaussiany_.g 3.02 %
Gaussiansx_.p 4.19 %

Accordingly, only the optimization using the Gaussian with a carrier frequency correspond-
ing to the X — B transition was carried on for more than 100 iteration, eventually reaching an

objective of 16.48 % after 300 iterations. However, this optimized field contained an obvious
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“Stark” component, as seen in the upper panel of Fig. 4.10, whose removal caused a drop of the
objective to 12.35 %. Interestingly, it also led to a field area that is for all intent and purposes
equal to zero (Aporm = 3.14 x 10717) and to a slight increase in selectivity py+ e/ PrsHe+> from
1.07 to 1.12.
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Figure 4.10: OCT-optimized fields for the control of the photodissociation of HeH* using a
Gaussian pulse as initial guess, before (upper panel) and after (lower panel) removal of the
“Stark” components.

Although the OCT algorithm led to significant improvement of the Gaussian trial pulse, even
better results were obtained (at equal fluence) by using the best Local Control pulse as initial

guess, as discussed in the next section.

4.3.2.2 OCT of HeH* using LCT pulses as trial fields

Finally, our LCT-optimized pulse were used as initial guess for the Optimal Control algo-
rithm. The best results were obtained when the A = 4.2, v = 0 Local Control field (filtered to
remove the “Stark” component) was used as initial guess, which is unsurprising given that it has
both the highest objective and the lowest area of all our LCT-optimized fields.

To allow for easy comparison with our other results, the fluence of the optimized pulses
was fixed at Fy = 0.06 a.u. The constraint on the area v was varied from v = 0 to v = 0.40 from
one calculation to another. However, choosing a value of v greater than 0.20 was found to lead
to convergence problems as the second term of equation 4.54 (p. 131) becomes dominant and
leads to field intensities which are far too high to be realistic.

The upper panel of Fig. 4.11 shows the fields obtained after 300 iterations for v = 0 and
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v =0.20. Every 100 iteration, the optimization was interrupted and the low-frequency com-
ponents were filtered to prevent the appearance of a significant Stark component in the field.
Interestingly, although the fields obtained for all values of v are almost identical visually and
lead to the same objective (21.55%-21.54%), their areas Anorm and Bporm significantly diminish

with increasing v, as shown in Fig. 4.12.
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Figure 4.11: OCT-optimized fields for the control of the photodissociation of HeH" using the
LCT field as initial guess, before (upper panel) and after (lower panel) removal of the “Stark”
components. The results for v = 0 and v = 0.20 are almost perfectly superposed.

However, these fields contain once again a very small “Stark” component, too small to be de-
tected by the naked eye. Suppressing it leads to a very small diminution of the objective (20.24%
for both v = 0 and v = 0.20) and to a significant diminution of the area, which becomes virtually
equal to 0 (Aporm = 2.5 x 10717 a.w). Again, the resulting fields for v = 0 and v = 0.20 are almost
identical and have very similar properties. Moreover, these fields have excellent selectivity: the
final populations of the two target states are slightly diminished, but those of the other ' are
more significantly decreased, leading to a selectivity py+,pe/ PH+He = 6-

As in the case of Local Control Theory, the area constraint in Optimal Control Theory was
thus found to be efficient in reducing the final area of the optimized pulse without significantly
affecting the objective. However, simply filtering the low-frequency components of the fields
was once again found to be more efficient in the present case, as it leads to zero-area fields with
reasonably high objectives (given the nature of the test system) and, more importantly, high

selectivity.

fNote that the fields are almost identical and that the slight differences may not be perceptible in the printed
version of his work.
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Figure 4.12: Aporm and Bporm of our OCT-optimized pulses for the photodissociation of HeH*
as a function of the area constraint v.

In terms of mechanism, the original Local Control field’s main frequency corresponds to a
photon energy of around 32.5 eV (Fig. 4.13, lower-left panel). This matches the energy region
where the partial cross sections for the desired B and E channels are maximal (as seen earlier in
Fig. 4.3, p. 134). However, since the cross sections for the unwanted channels still dominate even
in that region, a significant population transfer occurs towards them, hence the low selectivity
of the LCT pulse (Fig. 4.13, upper-left panel).

By contrast, the final Optimal Control field first contains a very intense component in the
20-30 eV energy range, i.e. in the region where the photodissociation only occurs through the
A channel (Fig. 4.13, lower-right panel). After about 14 fs, when the wavepacket has left the
Franck-Condon region, a second component then transfers population from the unwanted A
state to the target B channel: the lower frequency of that second contribution indeed matches

the asymptotic energy difference between the A and B states.

144



4.3. Laser control of the photodissociation of HeH*

0-06 TTAnHlis) + He'lis) oo b
1 BoH"  +He(ls 2s) 1 A .
- |COH(2s) +He™(1s)
0.04 + . -
——|DOH + He(1s 2p)
= 1+—|EOH@p) +He (1s) 1 1
o
0.02 7 . .
LCT OCT
M\__
0.00 T T T T T T T T T T T T T T
0 8 t(fs) 16 24 0 8 16 t(fs) 24 32 40
40 T I T ' T T I T I T I T I T
) 1 L
90
301 1 80
] ] 70 |
> 60
7 20 4 4 50 |
>
> 40
e | | - n
W10 - - 10 A
0
0 T T T T T T T T T T T T T T
0 8 16 24 0 32 40

8 16 24
t(fs) t(fs)

Figure 4.13: Upper panels: Population evolution for the filtered LCT-optimized field with
A =4.2,v =0 and the final OCT-optimized field (left and right panels, respectively). Lower pan-
els: corresponding Gabor transforms of the control fields (in arbitrary units). State designation
follows the convention given in Table 2.1 (p. 57).

4.3.3 Summary: Control of the photodissociation of HeH™"

To summarize, Table 4.3 shows the best results we obtained for each kind of pulse: the LCT-
optimized pulses with parameters A = 4.2, v = 0 and v = 0.10, the resonant Gaussian pulses with
fixed maximum intensity Emax(f) and with fixed fluence Fy = 0.06 a.u., and the OCT-optimized
pulses with fixed fluence F = 0.06 a.u. obtained by using either a Gaussian pulse or the v = 0.0
LCT pulse as initial guess. Results are shown for the original fields and their counterpart with

the “Stark” component removed.
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Table 4.3: Summary of the main pulses optimized for the control of the photodissociation of HeH". The final time ¢, the maximum value of the

electric field Epa« () and the fluence F are all expressed in atomic units.

Field Objective Ly Enmax(t)  Selectivity Anorm F Fig.

LCT,v=0 8.55 % 1000 0.068 1.067 6.39x107%  0.102 4.6, p.137
LCT v =0, no “Stark” 4.48 % 1000 0.047 1.243 -3.59x107* 0.049 4.6,p.137
LCT,v=0.10 4.75 % 1000 0.024 0.797 -4.30x107* 0.045 4.6,p.137
LCT v =0.10, no “Stark” 341 % 1000 0.022 0.563 1.32x107° 0.058 4.6,p.137
Gaussianx_.p, Emax(£)=0.05 237% 1638.4  0.050 0.853 0 0.376  4.9,p. 140
Gaussiany_.g, F=0.06 13.77% 1638.4  0.017 0.722 0 0.060 4.9, p. 140
OCT, Guess = Gaussianx_. g, Fy=0.06 16.48% 1638.4  0.049 1.067 5.94x 1072  0.060 4.10, p. 142
OCT, Guess = Gaussianx_. g, Fy=0.06, no “Stark” 1235% 1638.4 0.051 1.119 3.14x107Y 0.058 4.10, p- 142
OCT, Guess = LCT, =g, v = 0.20, Fyp=0.06 21.54% 1638.4  0.039 8.894 2.19x107™*  0.060 4.11,p. 143
OCT, Guess = LCT, -9, v = 0.20, Fy=0.06, no “Stark” 20.24% 1638.4  0.039 5.952 235x 10717 0.060 4.11,p.143
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4.4 Laser control of the photodissociation of CO**

As previously stated, CO?" is a species of particular interest in quantum control experiments
due to the fact that the v = 0 level of its X II state has a relatively long lifetime (7 > 3.8 s, long
enough to perform control experiments), whereas its excited vibrational levels predissociate
very quickly. In the following calculations, CO?" is assumed to initially be exclusively in the
V", J" = 0level of its X 311 state.

All the following computations were performed using the potential energy curves, transition
dipole moments and nonadiabatic couplings of the X 3IT and the eleven first 32~ states we
computed in Chapter 2 of this work, expressed on a spatial grid of 212 points ranging from Ry, =
1.5 ag to Rpax = 100.0 ag.

Our goal in this study of CO?* is to optimize laser fields that will photodissociate the dication
through its 3~ channels into the fragments C>* + O. As seen in Chapter 2, this amounts to
favoring the dissociation of CO?* through its ninth 32~ channel. The scattering projector used

in our definition of the control field is therefore':

P§C=f|(/>§(P)><¢§(P)I dp. (4.60)

Since the ten other 32~ states included in our calculations correspond to the fragments C*

+ O™, the selectivity is given by the expression:

Selectivity = pcz+,0/Pctso+

sg- 11 sg-
= po Y b, (4.61)
i=1,i#9

where p2+,q and pc+ .o+ are the populations in the dissociating channels leading to fragments

C?>* + O and C* + OF, respectively, and where pjz_ is the population in the i 3%~

channel at
time 7.
When compared to HeH*, additional difficulties in the optimization of photodissociation

control pulses of CO?>* arise from three factors:

1. The higher number of states included in the calculations (12 instead of 6), which increases

the required computational resources.

2. The fact that our aim is to dissociate the molecule through a single channel instead of
two, in the presence of 10 undesired channels instead of 3, leading to lower objectives

and selectivity.

3. The fact that the photodissociation cross section for this channel does not dominate in

any energy range (as shown in Fig. 3.26, p. 110), which complicates the control and limits

TNote: In this equation, 9 denotes the ninth 3~ state. For convenience, the I state was assigned the number
0 so that the first, second, third, ... 3=~ state could be assigned the numbers 1, 2, 3, ... to ensure that the state
numbering follows the same convention as in Table 2.6, p. 69.
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its yield.

To facilitate the comparison between our different results, a summary of the properties of

our most efficient optimized pulses will be given in Table 4.4, p. 154.

4.4.1 Local Control of CO%**

We first computed laser control pulses using Local Control Theory, as we did for HeH*, in
order to assess the efficiency of this approach and to use the resulting fields as a starting point
for the Optimal Control calculations. As in the case of HeH*, a timestep 6¢ = 0.05 a.u. of time
for the determination of the laser field E(#) was chosen, with a longer timestep g = 0.2 a.u.
for the field-free propagations.

Unlike in the case of HeH*, the value of the intensity parameter A was varied from one cal-
culation to the next. However, since our results for v = 0 contained no significant “Stark” contri-
bution and had a very low area (Anorm = 7.92 x 107°), no calculations with higher values of the
area constraint parameter v were performed.

The best results were obtained for A = 7.5, which corresponds to a good compromise be-
tween the need for keeping the field intensity reasonably low and the need for reaching good
values of the objective. The resulting field, which reaches an objective of 16.49% after 6500 a.u.
of time (= 157.27 fs), is shown in Fig. 4.14.
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Figure 4.14: Upper panel: LCT-optimized field to guide the photodissociation of CO?** towards
the C?>* + O channel, obtained with parameters A = 7.5, v = 0. Lower panel: Corresponding
diabatic populations.

Remarkably, despite the fact that the partial photodissociation cross section for the ninth
33~ state is significantly smaller than those of all other 33~ states (Fig. 3.26, p. 110), the opti-
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4.4. Laser control of the photodissociation of CO?*

mized pulse strongly favors the dissociation through that channel, as illustrated by the evolution
of the populations in the lower panel of Fig. 4.14.

However, although the C?>* + O channel is the most populated, summing the final popula-
tions in the 10 other 32 states included in our calculations leads to a higher result: 20.69%. The
pulse therefore slightly favors the dissociation through the C* + O* channels instead of C>* +
O, with a selectivity pc2+,.q/ pct+o+ = 0.797. This is however more than ten times higher than
the selectivity observed in simple photodissociation calculations, pcz+, o/ pc++o+ = 0.0612. The
remaining 62.82% of the population is still in the ground X IT state and could be photodissoci-
ated through a new application of the optimized pulse.

Interestingly, our Local Control fields do not contain any obvious-to-the-naked-eye Stark
contribution even for v = 0, unlike in the case of HeH". Accordingly, their spectrum does not
contain any low-frequency contribution.

It is also interesting to note that, unlike in the case of HeH™, the control field does not spon-
taneously stop: even after 6500 a.u. of time (= 157.27 fs), the algorithm still finds ways to keep
populating the target dissociation channel. However, by that point, the part of the wavepacket
that was first promoted to the excited states is very close the end of the spatial grid used in our
numerical calculations and the number of steps in the field-free propagations is getting close to
zero, preventing us from pursuing the calculations much further with our chosen set of parame-
ters (hence the abrupt end of the field shown in Fig. 4.14). The control dynamics could however
be simulated further by extending the spatial grid.

It might however not be reasonable to optimize very long control pulses as their experimen-
tal implementation would likely be very complex. Instead, it may be preferable to optimize a
shorter pulse with lower fidelity that could be repeatedly applied on the molecule to progres-
sively depopulate the initial state (in other words, using repeatedly a short but simple pulse may
be preferable to using a long and complex pulse).

We chose to pursue this strategy using Optimal Control Theory, by using either Gaussian

pulses or the first part of the Local Control pulse as trial field.

4.4.2 Optimal Control of CO**

Two series of Optimal Control calculations were performed for CO?*, differing by the na-
ture of the trial fields E” (¢): resonant Gaussian pulses for the first, and a variant of the LCT-

optimized field for the second.

4.4.2.1 OCT of CO?>" using Gaussian pulses as trial fields

As in the case of HeH", our first Optimal Control calculations for the photodissociation of
CO?** were performed with resonant Gaussian pulses as initial guess. The peak value of the
electric fields was fixed at 0.05 a.u. (2.57 x 10! V-m™!). Two carrier frequencies were tested: one
corresponding to the energy of a vertical transition from the initial X 3I1 state to the target ninth

3%~ adiabatic state at the internuclear distance where the vibrational wavefunction is maximal
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(Eny = 16.78 €V, see Fig. 2.14 on p. 74), and one corresponding to the maximum of the partial
photodissociation for the target channel (Ej, = 14.43 eV, see Fig. 3.26 on p. 110).

These calculations however proved completely unsuccessful: the objective never reached
more than 0.4% in the former case and 1.3% in the latter, even after dozens of iterations, as each
of them only brought negligible improvement. This lack of significant progress from one iter-
ation to another is usually observed when a “bad” trial pulse is used, preventing the algorithm
from finding an efficient pathway to go from the initial state ¥'; to the desired final state ¥
using the provided trial pulse as a starting point.

Additionally, the selectivity of the pulses was also found to be very low: the initial 3II state
is almost completely depopulated, but the dissociation occurs predominantly through C* + O*

channels, leading to a selectivity pez+, o/ Pct+o+ = 0.025 in the target C>* + O channel at best.

0.06 T T T T T T T T T T T T T T T T T T
0.04—-
0.02 —
0.00—-

-0.02

Electric field (a.u.)

-0.04 —

_0_06|I|I|I|I|I|I|I|I|I
o094r+—r—Fr—r——r———1r—+—1——1+7——7—

0354 —c*+0 JTURUOINOR PR TRRPP ]
0304 C' +0 ]

0.25 - -
0.20- -'
015 . b
0.10 4 BN ]
0.05 -

0.00 — iy’
0 5 10

Diabatic state populations

25 30 3 40 45
Time (fs)
Figure 4.15: Upper panel: One of the Gaussian pulses used as initial guess in our OCT calcula-
tions for the control of the photodissociation of the X 3T state of CO?* through the 32~ chan-
nels. Lower panel: corresponding diabatic state populations as a function of time.

Although improvements might possibly have been obtained by using a combination of
Gaussian pulses with different frequencies instead of one, we chose not to persevere in that
direction: the inefficiency of the Gaussian pulse was no surprise, given the fact that the partial

cross section for the photodissociation in the desired channel is very small.

4.4.2.2 OCT of CO?* using LCT pulses as trial fields

Instead, we chose to use our Local Control field as a trial pulse for the Optimal Control al-
gorithm, since it was clearly more efficient than any Gaussian pulse of equal intensity could

ever be and since this approach had proved efficient in the case HeH*. However, as noted in
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4.4. Laser control of the photodissociation of CO?*

Section 4.4.1, the Local Control field we computed has a relatively long duration: 6500 a.u. of
time (= 157.27 fs). Since the optimization of such a long field using OCT with a reasonably short
timestep 6t in such a large basis of states would require an enormous amount of computing
resources, we chose to limit the duration of our OCT pulse to 2000 atomic units of time (= 48.38
fs). In order to ensure a smooth start and end of the guess pulse, a modified sine square enve-
lope (Eq. 4.28, p. 124) was added to the LCT field with parameters tr = 2000, fsine = 200 a.u. of
time, as shown earlier in Fig. 4.2, p. 124. The resulting guess field is shown in Fig. 4.16 and leads
to a final population of 9.01% in the target C>* + O channel (a sharp drop from the 16.49% of the
original LCT field, due to its much shorter duration and the addition of the envelope — although

interestingly, the selectivity pcz+, o/ pc++o+ = 0.799 remains almost unaffected).
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Figure 4.16: Upper panel: Modified LCT pulse used as initial guess in our OCT calculations for
the control of the photodissociation of the X 3II state of CO?* through the 32~ channels. Lower
panel: diabatic state populations as a function of time.

Additionally, the constraints on the fluence and the area of the pulse were found to stifle
its optimization by Optimal Control Theory, leading to fidelities that stayed very low even after
numerous iterations. This is likely due to the relatively small transition dipole moments of CO**
compared to those of HeH™.

The parameter a( was varied from one computation to another. The best results were ob-
tained for @ = 200: although this occasionally led to peak field Epnax(t) values higher than 0.05
a.u., we circumvented this problem by dividing the whole field by a constant factor when its in-
tensity became too high, as previously done in other studies of this kind (see for example [196]).
This allowed us to prevent the field from becoming too intense while still giving “breathing

room” to the optimization algorithm.
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Figure 4.17: Upper panel: OCT-optimized pulse for the photodissociation of CO?* using the
LCT field (Fig. 4.16) as initial guess with ay = 200. Lower panel: diabatic state populations as a
function of time.

The resulting field, obtained after 158 iterations, is shown in the upper panel of Fig. 4.17 and
leads to an objective of 19.82%. This is slightly higher than the final objective of the LCT field
(16.49 %), which is notable given that the OCT pulse is about three times shorter and only has a
1.5 time bigger amplitude at most.

However, as in the case of the LCT-optimized pulse, summing the final populations in
the 10 other 3X~ states included in our calculations leads to a higher result than in the se-
lected channel: 24.4%. The pulse therefore still slightly favors the dissociation towards C* +
O™ channel instead of C?* + O, with a selectivity marginally higher than that of the LCT pulse:
Pz vo! Pt 4o+ = 0.81136.

Interestingly, although the optimized pulse outwardly appears rather close in appearance to
the trial pulse shown in Fig. 4.16, a comparison of their Fourier transforms shows that it contains
several new frequencies that account for its higher efficiency. These frequencies correspond to
different transitions towards various excited X~ channels, as can be deduced by comparing
that figure with the partial cross sections shown in Fig. 3.26, p. 110.

Originally, our intent was to filter the low-frequency components of the field then re-
optimize it with the area constraint to minimize its area. This however proved unnecessary
as the field was found to contain no low-frequency “Stark” component, and to possess a very
small area even without area constraint: Aporm = 4.46 x 1076,

In order to make the area strictly equal to zero, we simply divided the area of the pulse by

its number of points on our spatial grid and subtracted this small and constant result from each
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Figure 4.18: Zoom on the Fourier Transform of the initial (blue curve) and OCT-optimized pulses
(red curve) for the photodissociation of the X 11 state of CO?** through the *X~ channels.

point of the electric field as computed on our spatial grid. The resulting field is visually indis-
tinguishable to that shown in Fig. 4.17 and leads to results that are identical® to those obtained
with the field before applying this correction. This demonstrates that the original optimized

pulse can safely be considered as having an area equal to zero, for all intents and purposes.

4.4.3 Summary: Control of the photodissociation of CO**

To summarize, Table 4.4 shows the best results we obtained for each kind of pulse for the
control of the photodissociation of the X ®II state of CO?* through its 3=~ channels: the LCT-
optimized pulses with parameters A = 7.5 and v = 0, the resonant Gaussian pulse, the shortened
LCT pulse used as initial guess for the OCT algorithm and the OCT-optimized pulse obtained
with parameter ay = 200. Note that all optimized fields have significantly higher fluence than in

the case of HeH*, to compensate for the smaller transition dipole moments.

1LNegligible differences were obtained in the state populations, on the order of 5 x 1078 % at most.
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Table 4.4: Summary of the main pulses optimized for the control of the photodissociation CO?*. The final time tr, the maximum value of the electric

field Epax(t) and the fluence F are all expressed in atomic units.

Field Objective tf  Emax(f) Selectivity Anorm F Fig.

ICTA=7.5v=0 16.49% 6500 0.032 0.797 7.92x107° 0.627 4.14,p.148
Gaussiany_.g, Emax(£)=0.05 1.30% 2000 0.050 0.025 0 0.627 4.15,p. 150
LCT, shortened, with envelope 9.01 % 2000 0.032 0.799 827x107% 0.347 4.16, p- 151
OCT, Guess = Shortened LCT, ag = 200 19.82% 2000 0.050 0.811 0 0.905 4.17,p. 152
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4.5 General conclusion of the photodissociation control simulations

The following conclusions can be drawn from the simulations we performed for the pho-

todissociation control of the cations HeH* and CO?*:

— Although Gaussian pulses may at first glance occasionally appear to lead to higher objec-
tives than pulses optimized with Local Control Theory, comparing pulses with the same
fluence demonstrates that Gaussian pulses are much less efficient. Moreover, Gaussian
pulses tend to lead to relatively low photodissociation selectivity in systems where the

dynamics is strongly affected by nonadiabatic couplings, such as HeH* and CO**.

— The addition of a constraint on the area of the pulses is efficient in both Local Control The-
ory and Optimal Control Theory, but finding a value of the parameter v that leads to very
small area while still leading to a reasonable final value of the objective requires several
calculations. In the cases studied here, simply filtering the low-frequency components of

the optimized fields has a much more significant effect on their total area.

— The Optimal Control algorithm leads to much more efficient pulses when Local Control
pulses are used as initial guess instead of simple resonant Gaussian pulses, indicating
that a prior calculation of the field using Local Control Theory is worth the computational
effort.

— Although pulses optimized using Local Control Theory lead to lower objectives than those
optimized using Optimal Control Theory, their spectrum tends to be simpler, potentially

simplifying their experimental realization.

Note that better selectivity could certainly be achieved by using additional constraints, for
example by penalizing the population of other states than the desired ones, or by using strate-
gies inspired either by the “optical paralysis” scheme proposed by Malinovsky et al. [197] or by
the definition of a forbidden subspace of states by Palao et al. [198]. However, the inclusion
of certain of these constraints would require using the Chebyshev method instead of the split-
operator approach, which would significantly increase the duration of our calculations. Fur-
thermore, other modifications could be brought to the OCT algorithm to make our pulses more
experimentally realistic, for example by adding a frequency constraint [194, 199] or by reducing
their complexity by identifying and selecting the frequencies that correspond to the most stable
control pathways [200].
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CHAPTER

5

QUANTUM COMPUTING

In this chapter, we study the possible use of ultracold polar molecules as a physical support
for quantum computing, and more specifically the implementation of intra- and intermolecular
versions of Grover’s algorithm on the hyperfine states of trapped *'K8”Rb molecules. It is split

into two parts:

— We start by explaining the basic principles of quantum computing, the inner workings of
quantum algorithms such as Grover’s, the current state of the art in the field and more
particularly in the domain of molecular quantum computing. The model used in our

simulation is also described (Section 5.2.1, p. 172).

— We then present our results for the implementation of two- and three-qubit versions of
Grover's algorithm on a single *' K”Rb molecule (Section 5.2.2.1, p. 178 and 5.2.2.2, p. 180)
and of a two-qubit version of Grover’s algorithm on two interacting *'K®’Rb molecules
(Section 5.2.2.3, p. 182).

5.1 Basic principles of quantum computing

In the very first pages of this thesis, we mentioned Moore’s law as having been well-verified
so far: the evolution of computing power for a given cost approximately follows the exponen-
tial curve predicted by Gordon E. Moore (a physical chemist!) in 1965 [11]. It is however widely
predicted that Moore’s law will not stay valid for much longer, as the current trend in proces-
sor power evolution relies heavily on their progressive miniaturization. Indeed, not only does
miniaturization seem impossible beyond the scale of a few atoms, quantum effects also become

predominant at scales of tens of nanometers and below [201].

157



Chapter 5. Quantum computing

While quantum effects might cause the end of this era of exponential computing power
growth, they might also allow for an unprecedented speedup of certain types of calculations
by being directly exploited in quantum computers. The general concept of a quantum com-
puter was first formulated by Richard Feynman in 1982, who noted that there were two ways to

go about simulating a quantum system:

1. “Imitating” the laws of quantum mechanics using a “classical” computer (as is done in all

simulations presented in this work).

2. Using a computer made out of quantum mechanical elements which obey these laws
themselves [202].

Today’s concept of the quantum computer however has potential applications that are not
limited to the simulation of quantum systems and can be generally defined as a computing
machine which uses purely quantum phenomena, such as quantum superposition and entan-

glement, to solve specific problems much faster than classical computers.

5.1.1 Bits and qubits

The most commonly used smallest unit of information is the binary digit or bit, i.e. a value
equal to either 0 or 1. Any amount of information, no matter its nature or complexity, may be
represented in a sufficiently large basis of bits. The whole IIgX code of this thesis is for example
encoded in 595844 bytes, or 4766752 bits. Although some defend the use of ternary digits (rits)
or beyond for encoding information [203], bits are very convenient to use in electronics because
of the ease with which they can be physically implemented, for example as the electrical state of
a flip-flop circuit, as the presence of absence of a hole in a punch card or of small indentations
on the surface of a disk, as the direction of polarization on a magnetic band, ...

However, the use of quantum systems as computing machines offer a much more powerful
basic unit of data, the quantum binary digits or qubits. Whereas a bit can either be equal to 0 or

1, a qubit could be equal to any superposition of a “0” and a “1” state:

|¥1_qubit) = @l0) + b1}, (5.1)

where a and b are two complex numbers, with |a|?> and |b|? respectively representing the prob-
abilities of measuring the |0) and |1) states (and thus respecting the normalization relation
lal® +|b> =1).

The state of a single qubit can thus be characterized by a two-dimensional complex vector

“ (5.2)
L .

Similarly, the state of a two-qubit system will be characterized by a four-dimensional com-

with elements a and b:

plex vector (a, b, ¢, d):
|¥2—qubit) = @|00) + b|01) + c[10) + d [11), (5.3)
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where the leftmost digit in the kets represent the values of the first qubit and the rightmost digit
represents the values of the second qubit. Note that for most values of the coefficients a, b, c and
d, this wavefunction describes entangled states, i.e. it cannot be rewritten as a tensor product of
the states of two independent qubits, and the state of the two qubits are not independent. This

is especially obvious if we look at the case where both b and c are equal to zero:
|¥2— qubit, b=0, c=0) = @|00) + d [11). (5.4)

In this situation, the values of the two qubits are intrinsically linked: if one measures the value
of the first qubit, one can be certain that the second qubit will have the exact same value. Con-
versely, if ¢ and d are equal to zero, the state of the second qubit is completely independent
from the state of the first one and the wavefunction can be rewritten as a tensor product of the

state of the two qubits:

|\P2—qubit, ¢=0, d:0> =al00)+ b|01)

= |0>qubit 1® (d |0>qubit 2+ D] 1>qubit 2) . (5.5)

In this case, measuring the value of the first qubit yields no information about the value of the
second qubit.

Quantum superposition and quantum entanglement are the two main quantum phenom-
ena on which quantum computing is based, along with quantum interference [204, 205]. It
is through the careful exploitation of these purely quantum phenomena that computational
speedup is achieved over classical computations. The fact that a qubit can be placed in a super-
position of several logical states is one of the main factors behind the computational speedup
offered by quantum computing, as can be understood intuitively: in a way, it is as if a quantum
computer could be in “several states at once” and could be used to realize logical operations on
all these states simultaneously, whereas a classical computer could only be in a single logical
state at a time. This phenomenon is called quantum parallelism.

For this speedup to be significant, a quantum computer however needs to manipulate a
large number of qubits. The general wavefunction for an n-qubit system is a quantum super-

position of 2" states | k):
21

|¥ —qubie) = Y cklk). (5.6)
k=0

Such an n-qubit system is thus characterized by a 2"-dimensional complex vector:

Co
C1

C2 , (5.7)

Con—1

where the coefficients cj respect the normalization relation:
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2"-1

Y leklf=1. (5.8)
k=0

For convenience, it is customary to start numbering them at 0 instead of 1, to ensure that
their subscript (expressed in a decimal base) matches the value of the corresponding state | k)
of the qubit register (expressed in a binary base): ¢y for |0...00), c; for |0...01), ¢, for |0...10) and
so on.

To fully exploit the potentials of qubits, quantum logical operations are needed.

5.1.2 Logic gates and quantum gates

While representing information as bits is useful for the sake of its storage in physical sup-
ports, it also has a much more interesting application: data encoded in bits can easily be ma-
nipulated using logical operations called logic gates. These can be as simple as switching the
value of a bit (NOT gate) or making it equal to 0 or 1 depending on the values of two other bits,
for example if either of them are equal to 1 (OR gate), if they are both equal to 1 (AND gate) or if
only one of them is equal to 1 (“exclusive or” or XOR gate). The output of these gates and their
negation NOR, NAND and XNOR as a function of the input bits A and B is shown in Tables 5.1
and 5.2). Interestingly, all binary logical operations can be realized by using combination of

either NOR and NAND gates, which are thus said to be universal gates.

Table 5.1: Truth table of the NOT gate, which simply switches the binary value of a bit A.

Input | Output
A NOT A
0 1
1 0

Table 5.2: Truth table of the most commonly-used 2-bit gates: OR, AND, XOR and their negation
NOR, NAND and XNOR.

Input Output

A | B | OR | AND | XOR | NOR | NAND | XNOR
0|0 O 0 0 1 1 1
011 1 0 1 0 1 0
10| 1 0 1 0 1 0
1)1 1 1 0 0 0 1

Even very complex problems can be solved by breaking them down into a series of such
simple logical operations which only affect a small number of bits each, i.e. into an algorithm.
Physically, logic gates can be implemented in various ways, for example by using transistors

which manipulate the electrical current associated to the value of the bits. This is how today’s
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computers work: their microprocessors contain hundreds of millions or billions of transistors

which realize the required logical operations with tremendous speed.

In quantum computing, conventional logic gates are replaced by quantum logic gates (or
simply “quantum gates”). “Classical” logic gates cannot be directly transposed in the quantum
world, as the laws of quantum mechanics require them to be reversible and representable by
unitary matrices. For example, the quantum counterpart of the 1-bit NOT gate is the 1-qubit

quantum gate X, represented by the following 2 x 2 matrix [206]:

01
Xl—qubit = . (5.9)
1 0

When applied to the state vector of a qubit, it indeed swaps the coefficients of |0) and |1):

[l

or, in other words,

aloy + b1 = b0y +all). 5.11)

Moreover, the significant speedup offered by quantum computing comes from the exploita-
tion of quantum mechanical phenomena, which requires logical operations that have no equiv-
alent in classical logic. The Hadamard Gate, for example, is commonly used to create quantum

superpositions:

H NN (5.12)
1—-qubit \/z 1 -1 . .

When applied on a qubit in its pure state |0), it indeed creates an equal superposition of |0)
and |1):

H,- —qubit

110)+0[1) —— |0>+—|1) (5.13)

\/_ V2
There are many other commonly-used quantum gates. Unlike in classical logic, where all
gates can be re-expressed as combinations of NOR or of NAND gates, no single quantum gate is
universal: a universal set of quantum gates is required if one wants to be able to realize all possi-
ble qubit manipulations [206]. The ability to implement a universal set of quantum gates is one
of the criteria a quantum computer must meet, which will be further discussed in Section 5.1.5,
p. 168.

In the same way that conventional logic gates can be stringed together to form specific al-

gorithms, a series of quantum gates can be used to realize quantum algorithms.
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5.1.3 Quantum algorithms

A series of quantum algorithms which exploit the quantum properties of qubits to speed up
certain type of calculations have been developed [207]. Their execution always follows the same

basic sequence:

(A) The system is initially placed in a pure state, typically the one corresponding to |0...00).

(B) The quantum algorithm itself is executed through the sequential application of several

quantum gates.

(C) Finally, the state of the system is measured, which serves as output of the quantum algo-

rithm.

Given the quantum mechanical nature of the system, its state cannot be measured during
step (B) as it would induce the collapse of the wavefunction, destroying the quantum superpo-
sition. Moreover, the algorithms must ideally be designed in such a way that the system ends
up in a pure state at the end of step (B) to ensure that the measurement in step (C) yields a de-
terministic result. This is however not the case of all quantum algorithms: in some of them, the
system remains in a quantum superposition even at the end of step (B), which means that the
measurement yields a probabilistic result — yet they are devised to ensure that the probability
of measuring the correct state is high. In that case, multiple executions of the algorithm may be
necessary to ensure that the correct result was obtained with a reasonable uncertainty margin.

Chronologically, the first quantum algorithm is Deutsch’s algorithm, which allows to check
whether a Boolean function f: {0,1} — {0,1} is “constant” (equal to either 0 or to 1 on it whole
domain) or “balanced” (equal to 0 on half of its domain and to 1 on its other half). Whereas a
classical algorithm would have to compute f(0) and f(1) then compare the results, Deutsch’s
algorithm only needs to evaluate the function f once to determine whether it is constant or
balanced [208].

Initially proposed for a Boolean function with a 1-bit input f{0,1} — {0,1}, the algorithm
was later generalized to the case of an n-bit input function f: {0,1}" — {0,1} [209] and improved
upon [204]. Once again, whereas a classical algorithm would require up to 2"~141 evaluations of
the function (i.e. it would have to compute the function for up to half of all possible inputs plus
one), Deutsch-Jozsa’s generalized algorithm only requires a single evaluation of the function,
potentially speeding up the process dramatically for large values of n. Although it has little
practical application, the Deutsch-Jozsa algorithm was the first quantum algorithm to exhibit
such a clear speedup over the best possible classical algorithm.

However, the most famous quantum algorithm is probably Shor’s algorithm, [210], which al-
lows the prime factorization of large numbers in polynomial time instead of (sub-)exponential

time as in the case of classical algorithms'. It is of particular interest in the domain of crypt-

TThe time complexity of algorithms is often expressed using the “Big O notation”, which denotes how their exe-
cution time scales with a change in input size N. Polynomial-time algorithms for example scale as O(N ky and
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analysis, as a lot of public-key encryption systems, such as the widely-used RSA algorithm, rely
on the fact that while it is very easy to multiply two prime numbers, it is very difficult (read:
very time-consuming on a classical computer) to factorize the result [211]. If implemented on
a sufficiently powerful quantum computer, Shor’s algorithm could however factorize very large
numbers into their prime factors, thus breaking RSA-like encryption — a perspective that al-
legedly spurred the interest in quantum computing of organizations such as the NSA* [212].

A variety of other quantum algorithms have been developed throughout the years, such as
Simon’s algorithm [213], Hallgren’s algorithm [214], the quantum approximate counting algo-
rithm [215] and various others (the American National Institute of Standards and Techniques
maintains an exhaustive list of known quantum algorithms [216] and a reasonably recent re-
view of quantum algorithms can be found in Ref. [217]). A large fraction of these algorithms are
based on Shor’s factorization algorithm and/or Grover’s search algorithm, on which we focus in

this work.

5.1.4 Grover’s algorithm

This fundamental quantum algorithm was conceived in 1997 by Lov Kumar Grover [218].
Its function is simple: find a specific element among an unsorted database containing N
randomly-ordered elements (for example a phone directory of N names arranged in a com-
pletely random order). Since the order of the elements in the database cannot be assumed to
follow any logic, there exists no “smart” way of solving this problem using a classical computer:
finding the right element would be a matter of checking each element sequentially until find-
ing the correct one, which would on average require N/2 accesses to the database. Grover’s
algorithm, however, requires only O(v/N) accesses to find the desired element, thus providing
a quadratic speedup, and was shown to be optimal (i.e. for a given number of accesses to the
database, no other quantum algorithm can give a better probability of measuring the target
state than Grover’s) [219].

The trick, in a nutshell, consists in placing the system in an equal superposition of states
which each correspond to one of the elements of the database, in order to consider all of them
“at once”, then to exploit constructive and destructive quantum interference to progressively
augment the amplitude of the sought-after state and decrease those of the others. In a last step,
the resulting state is measured, which yields the desired state with a probability of at least 50%.

In practice, the algorithm can be split in the following steps:

(A) State mapping and initialization
For an N-element database, an n-qubit basis is chosen so that each of its N = 2" logical
values Sp =10...00), S; =10...01), ...Sy_1 =|1...11) is associated to one of the database

k
exponential-time algorithms as O(2"V" ), while the execution time of sub-exponential algorithms increases faster
than any polynomial but slower than an exponential.

fNamed after the initials of its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.

¥ National Security Agency.
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elements. The system is then placed in a pure quantum state, typically the one associated
to [0...00).

(B1) Creation of the quantum superposition
The system is placed in an equal superposition of all N = 2" states through the use of the
N successive Hadamard gates each acting on a single qubit or of the (Walsh-)Hadamard
transform, which acts as an n-qubit Hadamard gate and creates the same superposition
in one step. Its effect on the state vector is represented by a (IV x N) matrix with ele-
ments [206]:

1

(Hn—qubit)i,j = \/z_n(—l)i'j, (5.14)

where i - j is the bitwise inner product’ of the binary representation of indices i and j,
which range from 0 to N — 1. In this work, we will consider Hadamard transforms of two

and three qubits:

1 1 1 1
1|1 -1 1 -1
Hz—qubit=§ L1 -1 -1l (5.15)
1 -1 -1 1
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
H3—qubitzi 1 -1 -1 1 1 -1 -1 1 5.16)
velT 11 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

(B2) Phase shift of the target state
As in any search problem, we assume we have a function C(S;) that allows to discriminate
between the desired state S, and all other states (for example C(S,) = 1 while C(S;%,) = 0).
The result of this “oracle”” is then used to rotate by 7 radians the phase of the amplitude

of the desired state S, only, while leaving all other phases unchanged. In other words,

fThe bitwise inner product is computed by first converting the indices i and j to vectors in base 2, for exam-

ple 0 — (0),1 — (1),2 — (1,0),3 — (1,1), ... ; then computing their scalar product. For example, (Hp)2,3 =
L @0 210+l _ =1
Ver on Var®

*In this context, the term “oracle” has a very general meaning: Ref. [219] describes it as “a black box subroutine
into which we are not allowed to look”. In the present case, it is any function that allows to discriminate between
the desired state and the others: its inner workings are irrelevant to Grover’s algorithm as a whole. Note that by
metonymy, step (B2) as a whole is sometimes called “oracle”.
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it switches the sign of the coefficient of the target state and leaves all other untouched,

which corresponds to a diagonal matrix with element —1 for the target state and +1 for all

the others (i.e. (~1)¢5) elements on the diagonal). For example, in the 2-qubit case with

state [10) as a target, it reads:

02—qubit =

(B3) Inversion about average

S ©O O+~

S © = O

- o O O

(5.17)

Next, we perform an “inversion about average” of the amplitudes. This means we mod-

ify their value in such a way that the difference between each amplitude and their aver-

age changes sign, while the average itself remains unchanged. This is better understood

through the use of an example, such as the one encountered in the 2-qubit case (see Ta-

ble 5.3).

Table 5.3: State amplitudes before and after the inversion about average in the first iteration of
the two-qubit version of Grover’s algorithm.

[00) | |01) | [10) | |11) | Average
Amplitudes before the operation % % —% % 711
Differences with the average 711 % —% 711
Amplitudes after the operation 0 0 1 0 711
Differences with the average - %1 - % % - %

This transformation corresponds to the diffusion transform D which can be represented

by the following matrix:

o= 2
D {D"f = N
D;; = -

—

2
+ 5

for off-diagonal elements (i # j),

For example, in the 2-qubit case, we have:

(5.18)
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D 1 1 -1 1 1 (5.19)
2—qubit = 2 1 1 -1 1 . .
1 1 1 -1

In his original paper, Grover notes that the matrix representing this transformation is not
local, since there are transitions from each state to all other NV states, and suggests splitting
it into the successive application of a Walsh-Hadamard transform H;,_qupit, @ phase shift
R;,—qubit of the |0...00) state and a Walsh-Hadamard transform [218]:

Dn—qubit = Hn—qubit Rn—qubit Hn—qubit- (5.20)

In the present theoretical implementation, this is however not necessary and the inver-

sion about average is realized in a single step.

Repeated iterations
Steps (B2) and (B3) are repeated O(v/N) times in order to maximize the amplitude of the
desired state. In the 2-qubit case, only one such iteration is necessary, while three itera-

tions are necessary in the 3-qubit case, efc.

(C) Measurement
Finally, the state of the system is measured, thus providing the answer to the search prob-
lem. Note however that multiple executions of the algorithm might be necessary to obtain
the answer with a reasonable uncertainty margin, depending on the fidelity of the quan-
tum gates and on the dimension of the database, as Grover’s algorithm yields a probabilis-
tic result for certain values of N. Luckily, this is not the case for the 2 and 3-qubit cases

considered here.

The maximum probability amplitude for the target state is obtained after a number of iter-
ations k = mv/N/4 [220], thus indeed providing a quadratic speedup compared to the classical
algorithm, which scales as N/2. Note that the amplitude of the target state follows a sinusoid as

a function of the number of repetitions k of steps (B2) and (B3) [201]:

. (2k+1)0 2k+1)60
|¥) = sin| ———— | [target state) + cos| ———— | |other states), (5.21)
where the angle 6 is given by the relation:
sin (6 ) _ 1 (5.22)
2) VN '

The amplitude of the target state and the probability of measuring it for the first fifteen iter-
ations of the 2- and 3-qubit versions of Grover’s algorithm are given in Table 5.4. The number of

iterations required to reach a certain probability is discussed in Ref. [221], and it bears mention
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Initial state 1) Hadamard Gate
00> [01> |10> |11> [00> |01> |10> |11>
1 0 0 0 172 12 12 1/2
2) Phase shift of the target state 3) Inversion about average
00> [01> |10> |11> [00> |01> |10> |11>
112 12 112 12 0 0 1 0
—%——{ —————— ‘|—average =g 2202020202020 EEEssSsSSs —— - - average =1/4
Aaverage 1/4 1/4 -3/4 1/4 Aaverage -1/4 -1/4  3/4 -1/4

Figure 5.1: One iteration of the two-qubit Grover algorithm, with |00) as initial state and |11)
as target state. From left to right, the vertical lines represent the amplitudes for |00}, [01), |10}
and |11). Note that the average amplitude does not vary between steps 2) and 3), but that the
differences between each amplitude and the average change sign.

that unlike the Deutsch-Jozsa or Shor algorithms, Grover’s algorithm is probabilistic: it yields
the correct answer with a certain probability which may be lower than 100%, thus often requir-
ing multiple executions of the algorithm in order to obtain the desired result with a satisfying
margin of confidence. In practice, this is however likely to hold true even for “deterministic”
quantum algorithms (which are supposed to lead to the correct answer with a probability of
100%), as interactions with the environment may affect the amplitudes of the state superposi-
tion of the system and lead to a probabilistic instead of deterministic result upon measurement.
Quantum Error Correction (QEC) strategies have however been developed to mitigate the effect
of decoherence and inaccuracies within reasonable limits [222-225], and a scheme that allows

for the loss of some qubits has been developed [226].

Along with Shor’s, Grover’s algorithm is often considered the most important quantum algo-
rithm (with some even quipping that “there are really only two quantum algorithms: Shor’s and
Grover’s”, quite mistakenly [217]). It serves indeed as the basis for many other quantum algo-
rithms and protocols with a wide variety of applications, ranging from the resolution of physical

and mathematical problems to quantum cryptography (see for example Refs. [215,227-233]).

However, while Grover’s algorithm is one of the clearest examples of the potential speedup

offered by quantum computing and the cornerstone of many subsequent quantum algorithms,
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Table 5.4: Amplitude and probability of the target state in the 2- and 3-qubit versions of Grover’s
algorithm as a function of the number of iterations.

2-qubit 3-qubit
Iteration k | Amplitude | Probability | Amplitude | Probability
1 1.000000 1.000000 0.883883 0.781250
2 0.500000 0.250000 0.972272 0.945313
3 -0.500000 0.250000 0.574524 0.330078
4 -1.000000 1.000000 -0.110485 0.012207
5 -0.500000 0.250000 -0.740252 0.547974
6 0.500000 0.250000 -0.999893 0.999786
7 1.000000 1.000000 -0.759587 0.576973
8 0.500000 0.250000 -0.139488 0.019457
9 -0.500000 0.250000 0.550356 0.302891
10 -1.000000 1.000000 0.965021 0.931266
11 -0.500000 0.250000 0.897176 0.804925
12 0.500000 0.250000 0.380743 0.144965
13 1.000000 1.000000 -0.326062 0.106316
14 0.500000 0.250000 -0.869835 0.756614
15 -0.500000 0.250000 -0.978692 0.957837

and although it already has been implemented experimentally as early as 1998 [234], it has not
yet been used to crack problems beyond the capabilities of conventional computers. So far,
2- and 3-qubit versions of the algorithm have been implemented experimentally on various
physical systems [235-239], thus allowing a search in a database of eight elements at most (a
trivial problem easily solvable at a glance), as well as a 7-qubit version [240] using liquid NMR
(as we will see, the “quantumness” of this approach has however been called into question).
Despite their elegance and deceptive simplicity on paper, quantum algorithms are indeed
very hard to implement experimentally. Although the theoretical bases of quantum computing
are well-established, the nature of the best physical support to encode quantum information

and ensure its easy manipulation is still debated.

5.1.5 Currentrealizations in quantum computing and requirements

The concept of quantum computer is a very general one: many different kind of microscopic
physical systems have therefore been considered as potential quantum computers. In this sec-
tion, we will give a very brief overview of the current state of the art in quantum computing and
of the main obstacles to the realization of powerful quantum computers, able to manipulate
a large enough number of qubits to solve problems beyond the abilities of current “classical”
computers.

In 2000, David P. DiVincenzo proposed the following list of requirements a physical system

should meet in order to be used in efficient quantum computation [241]:

1. Scalability, with well-characterized qubits
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It should be possible to encode a large number of qubits in the system and to manipulate

them individually.

2. The ability to initialize the qubits to a simple state
Before attempting any computation, it should be possible to “initialize” the system by
placingitinto a specific state (typically, the physical state associated with the pure |000...0)

value of the qubit register).

3. Decoherence times much longer than the gate operation time
The decoherence time characterizes how long it takes for the interaction between the
quantum system and its environment to significantly affect its state amplitudes. To min-
imize the effects of decoherence, it should occur on much longer timescales than that of

the algorithm execution.

4. A “universal” set of quantum gates
All possible quantum logical operations should be implementable on the system through

the combination of a finite set of quantum gates.

5. A qubit-specific measurement capability
Last but not least, it should be possible to measure specific qubits in order to read out the

result of the quantum computation.

The matters of scalability and decoherence tend to be the most problematic. The estimated
number of qubits necessary in a “useful” quantum computer depends on its projected applica-
tion: it varies from a few tens for some quantum chemistry and physics problems [242-244] to
hundreds or thousands for the cryptanalysis of typical public-key cryptosystems [245]. Deco-
herence is also very troublesome because it essentially disrupts the purely quantum behaviour
of the isolated system, modifying the coefficients of the superposition or destroying it entirely.
Although Quantum Error Correction techniques allow for the correction of a certain amount of
decoherence per gate, which is inevitable in any real experiment, they are unable to cope with
large amount of decoherence (see Ref. [225] for an introduction to the subject).

We thus appear to be several major breakthroughs away from “useful” quantum comput-
ers, (i.e. quantum computers which manipulate enough qubits to outperform current classical
computers in the resolution of specific problems). However, very encouraging results have been
obtained on a variety of physical systems.

For example, liquid-phase NMR quantum computing uses nuclear spin states of a liquid
sample of molecules as qubits. However, unlike most other physical implementations of quan-
tum computers, it uses the average properties of a macroscopic ensemble of molecules as sup-
port for the quantum information instead of the individual properties of microscopic, quantum
systems. Although it yielded very promising results in the early day of experimental quantum
computing, it was quickly realized that it could not be used to implement useful quantum com-

puters because of bad scaling properties caused by low signal-to-noise ratio [246]. Worse, recent
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studies have called the “quantumness” of this approach into question, as it appears not to allow
for entangled states and can be modeled using a classical statistical model [247,248].

Another popular approach is the use of superconducting qubits, i.e. the encoding of qubits
in the charge or phase properties (or both) of superconducting circuits [249]. While compara-
tively closer in spirit to the functioning of “classical” computers than other quantum comput-
ing schemes, and despite recent progresses, this approach still suffers from short decoherence
times due to the strong coupling with the environment [239, 250].

Linear optical quantum computing constitutes another leading approach [251]. It relies on
the encoding of qubits in the properties of photons (typically, their polarization) and on the
implementation of logic gates using circuits of linear optical elements such as beach splitters,
phase shifters, etc. [252,253].

The encoding of qubits in the energy levels of cold trapped atomic ions as well as in their
collective motion states is yet another very promising approach, as it benefits from long deco-
herence time, high fidelity qubit manipulation with lasers and easy readout [254]. Very impres-
sive experiments have been realized in recent years with the encoding of up to 14 qubits [255],
as well as the implementation of some quantum gates and of the Deutsch-Jozsa algorithm [256].
The work of David Wineland and his group is of particular interest, and led to his selection as
co-recipient of the 2012 Nobel Prize in physics [257-259].

Similarly, arrays of ultracold neutral atoms trapped in an optical lattice as well as atoms
placed in reflective cavities are also being considered as potential quantum computers [260].
Approaches that combine the encoding of qubits in registers of atoms or ions, with the use of
photons to transfer qubits from one register to another, appear particularly promising [261,262].

Other approaches of quantum computing currently being developed include the use of
solid-state NMR, Bose-Einstein condensates, and many other physical systems. Note that in
addition to the “standard” implementation of quantum computing based on the successive ap-
plication of few-qubit quantum gates which has been presented here, other approaches have
also been proposed, such as the adiabatic quantum computer [263], the one-way quantum com-
puter [238,264] and the topological quantum computer [265], which will not be discussed in
detail in this thesis.

While their exact nature remains somewhat mysterious and controversial, the supposedly
“‘quantum” computers developed by D-Wave Systems and recently sold to Google Inc. and
NASA' to much media attention must also be mentioned here. Although the Canadian com-
pany boldly claims to offer “a superconducting 512-qubit processor chip |[...] housed inside a
cryogenics system within a 10 square meter shielded room” [266], skeptics such as Massachusetts
Institute of Technology professor Scott Aaronson have tempered these assertions [267] and a
team led by Matthias Troyer from ETH Zurich* recently found no conclusive evidence of quan-
tum speedup during a comparison between D-Wave and a classical computer running an opti-

mized algorithm [268].

f National Aeronautics and Space Administration.

*Eidgendssische Technische Hochschule Ziirich.
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For the curious, note that Prof. Aaronson also published on his blog very interesting rebut-
tals [269] to some of the critics of quantum-computing skeptics such as Prof. Dyakonov, who
questions whether fault-tolerant quantum computing with a large number of qubits will ever
be experimentally feasible and whether they would be useful [270]. While it is true we are still
several breakthroughs away from “useful” quantum computers, we do not believe that research
on the subject amounts to wasted time — quite the contrary, as it furthers our understanding of
matter and drives the amelioration of quantum control techniques.

Given today’s state of matters, it is very difficult to determine what physical support the first
“useful” quantum computers will use. In addition to those mentioned above, molecular systems

are possible candidates.

5.1.6 Molecular quantum computing

In this work, we explore the potential role of laser-controlled molecules as quantum com-
puters. Molecules indeed seem like a logical choice for quantum computing: they are small
enough to obey the laws of quantum mechanics while having a rich internal energy structure
that could potentially allow the encoding of a large number of qubits. Moreover, the develop-
ment of laser control techniques also opens interesting perspectives in the coherent manipula-
tion of these qubits.

Since the early 2000s, a growing number of articles exploring the use of molecules in quan-
tum computing have been published, starting with de Vivie-Riedle’s group pioneering work on
the encoding of qubits in vibrational levels of acetylene [190, 271], followed by theoretical sim-
ulations using electronic states [189, 192,272-275] or (ro-)vibrational levels (7,8, 10,276-285] as
physical support for the qubits.

In this approach, the populations of N = 2" specific energy levels of the molecules are asso-
ciated to the N logical values of the n-qubit register (for example, the population of a given rovi-
brational level v, ] would correspond to the coefficient ¢; of logical state |0...00) while the pop-
ulation of another level v/, J' = 0 would correspond to the coefficient ¢; of logical state |0...01),
and so forth). Quantum gates are then implemented on these qubits through the use of laser
pulses which guide the desired population transfers among the chosen states. Since quantum
gates are described by unitary matrices, these population transfers correspond to unitary trans-
formations.

The control pulses can be based on techniques such as Stimulated Raman Adiabatic Pas-
sage (STIRAP) [284] or be optimized theoretically by Optimal Control Theory [189] or through
the use of genetic algorithms [282, 286, 287]. At the end of the computation, the state of the
system is measured with standard spectroscopic techniques, yielding the result of the quantum
algorithm [190].

However, as seen in Chapter 4, theoretical control pulses are extremely sensitive to the accu-
racy of the ab initio data — and quantum computing of course requires extremely high fidelity
transitions, as even a very small loss of population with each quantum gate leads to errors which

quickly accumulate in the course of a full algorithm. Furthermore, the decoherence time of
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molecular states tends to be shorter than those of atoms and the quantity of qubits that can
be encoded on a single molecule then “addressed” individually using laser pulses cannot be
infinitely stretched.

This last problem could however be circumvented by encoding the qubits on several
molecules instead of a single one and by exploiting the interaction between molecules to entan-
gle the qubits they bear. Note that hybrid approaches, using for example molecules interacting

with atoms [288] or with solid state quantum processors [289], have also been proposed.

5.2 Theoretical implementation of quantum algorithms on ultracold

41K8"Rb molecules

Let us preface with a disclaimer that Rolf Landauer, famous for its contributions to the

physics of information, suggested all works on quantum computing should contain:

“This scheme, like all other schemes for quantum computation, relies on speculative technology,
does not in its current form take into account all possible sources of noise, unreliability and man-
ufacturing error, and probably will not work.”

— Prof. Rolf Landauer (1927 — 1999) [290]

What Prof. Landauer meant by this was of course not that all research in quantum comput-
ingis useless, but that we should keep the current technical limitations in mind when discussing
quantum computing and refrain from overselling our results.

Let us thus define clearly our intention here: our aim is not to provide a working scheme for
quantum computation with a high number of qubits, but to explore possible answers to some
of the challenges it poses. More precisely, we theoretically study the possibility of implement-
ing intermolecular logical operations on qubits encoded in hyperfine levels of trapped polar

molecules, using a simplified model.

5.2.1 Model

We chose to explore the possibility of using trapped diatomic molecules interacting with
each other through their electric dipole-dipole interaction as quantum computers, as first pro-

posed by DeMille [70]. Such molecules indeed present several advantages:

— First and foremost, their large and long range permanent electric dipole moment allows
the transmission of information between molecules through their dipole-dipole interac-
tion, as well as the transmission of information to other kind of systems such as atoms,
solid-state systems, efc. [288,289,291].

— They can be created at ultracold temperatures (i.e. with translational temperatures on

the order of uK or less) by photoassociation of laser-cooled atoms [292-294] or by mag-
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netically tuning through Feschbach resonances [71, 72,295, 296] (for a review of these ap-
proaches, see Refs. [297] and [298] respectively).

— They possess a rich internal level structure and strong optical and microwave transitions,
allowing for the encoding of several qubits on a single molecule and their coherent ma-

nipulation through laser control techniques [291].

— Furthermore, their hyperfine levels have a long decoherence time (on the scale of sev-
eral seconds [70]), several orders of magnitude larger than the gate operation time (on
the scale of tens or hundreds of microseconds [70,299]), making them good support for
quantum information (both in the context of qubit manipulation and of their storage in a

“‘quantum memory” [289]).

For these reasons, Kuznetsova et al. [291] note that polar molecules combine some of the ad-
vantages of ions and neutral atoms and of quantum dots and superconducting circuits, “making
them compatible with various architectures, including optical lattices, microwave, static and ac
electric and magnetic traps and solid state-systems”. Recent reviews of the state of the art in the
field of polar molecules and in the control of ultracold molecules can be found in Refs. [300]
and [301] respectively.

We chose to focus on KRb molecules, which can be obtained at ultracold temperatures in
their absolute ground state (i.e. their lowest electronic, vibrational, rotational and hyperfine
state) by association of their constituting atoms through a Fano-Feshbach resonance, followed
by a population transfer to the lowest rotational manifold by STIRAP and a microwave transition
to its lowest hyperfine state (see Refs. [71-74] for more details).

As in the model initially proposed by DeMille, we assume that the molecules are held in a
one-dimensional optical trap array [302] created by a standing-wave laser beam. An electric
field with a gradient along the trapping axis is added to allow the spectroscopic addressing of
each molecule [70].

We use a simplified model in which the molecules are assumed to be fixed in space in the
optical lattice and to be aligned along the Z axis of a laboratory frame coinciding with the in-
termolecular axis, as illustrated in Fig. 5.2. An intermolecular distance of 100 nm between the
centers of mass is used to ensure a high dipole-dipole interaction. Quantum tunneling from
one site to another is assumed not to take place on the considered timescales.

The molecules are also assumed to be initially placed in their pure absolute ground state
and stay at all time in the lowest vibrational level v = 0 of their ground X !X* electronic state.
Only hyperfine levels or the first two lowest rotational manifolds /=0, 1 are considered here.

We implement not only intramolecular but also infermolecular quantum gates, i.e. condi-
tional gates operating on qubits encoded in energy levels of two interacting molecules. This
constitutes an important step towards scalability, as a large qubit register could be created by
working with networks of interacting molecules, each carrying a small number of qubits [9].

As earlier, this first requires the resolution of the time-independent Schrédinger equation

by diagonalizing the Hamiltonian. This was achieved by Philippe Pellegrini in the course of
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z

Figure 5.2: Model used in this work: two diatomic molecules placed in neighbouring sites of an
optical trapping potential (black curve). The trapping field, the control field and the internu-
clear axis are all aligned with the Z axis of the laboratory-fixed frame.

his postdoctoral work at the Laboratoire de Chimie Physique using the model described Sec-
tions 5.2.1.1 and 5.2.1.2.

5.2.1.1 Hamiltonian for a single diatomic molecule

In the one-molecule case, only a magnetic field is applied: an additional electric field with
a gradient along the Z axis is only added in the two-molecule case to differentiate the energy
levels of the two molecules.

Since we restrict our basis of states to the v = 0 levels of the ground electronic state, the
electronic and vibrational contributions are constant. The field-free Hamiltonian H,, which is

equal to the internal Hamiltonian of the molecule, can thus simply be written as:

}ﬂ)::}ﬂn
= got+ gt g% (5.23)

where H™! is the rotational Hamiltonian, H" is the hyperfine Hamiltonian and H” is the Zee-
man Hamiltonian.

Let us develop each of these terms, starting with H™*:

H™'= BN?, (5.24)

where B is the rotational constant and N is the rotational angular momentum. In the present
study, we neglect the centrifugal distortion term and beyond, as only small values of the rota-
tional quantum number J are considered.

The hyperfine Hamiltonian H" is given by:

2
HYf = Y VieQi+ Y ¢iN-Li+asli T-Li+cs I - I, (5.25)

2
i=1 i=1

where:
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— the first term is the electric quadrupole coupling, arising from the interaction between
the nonzero electric field gradient V; and the nuclear quadrupole electric moments Q; of

the nuclei of the i atoms;

— the second term is the spin-rotation interaction between the nuclear spin I; of atom i and

the angular momentum N of the molecule;

— the third term is the tensor nuclear spin-spin interaction (T being the tensor describing
the angle dependence of the spin-spin interaction), which is neglected in this work as it
was found to be an order of magnitude smaller than the fourth and last term, the scalar

nuclear spin-spin coupling interaction.

An interesting description of these terms and of their connection to physical quantities com-
monly used in NMR spectroscopy can be found in Ref. [303]. The value of constants B, ¢, ¢z, ¢3
and ¢4 used in this work were taken from Ref. [304].

The last term of Eq. 5.23, the Zeeman Hamiltonian HZ, is defined as:

2
H”=g.uyN-B- ) giun1;-B, (5.26)
i=1

where uy is the nuclear magneton, B is the magnetic field, g, is the rotational g-factor of the
molecule and g; is the nuclear g-factor for nucleus i'.

The inner Hamiltonian H™™ is expressed in the uncoupled basis of states |J, mj, my,, my,).
Each state is characterized by its rotational quantum number J, its projection m; on axis Z as
well as the projections m;, and my, of the nuclear spins I; and I» of the two atoms. The hyperfine

eigenstates |¢p;) found by diagonalizing the Hamiltonian are a mixture of these basis states:

0= X @y, T, ). (5.27)

J,my,my ,my,

This state mixing allows certain transitions between hyperfine states whose main con-
stituent |/, my, my,, mr,) is such that these transitions would normally be forbidden by rotational
selection rules.

The number of states in each rotational manifold J is equal to:

2J+D2hLHL+1D 2L +1). (5.28)

For 'K8Rb, we have Iug = Iy, = 3/2, leading to 16 states in the J = 0 manifold and 48
states in the J = 1 manifold, for a total of 64 states in the first two rotational manifolds. No
higher energy level was considered in the present calculations.

In our simulations, the system is initially placed in a single hyperfine level associated to the

pure |00...0) state of the quantum register. The time-dependence is induced by the microwave

fThe g-factor, or dimensionless magnetic moment, is a dimensionless quantity that relates the magnetic moment
of a molecule or a particle to its angular momentum. It is linked to the gyromagnetic ratio y by the relation
Y = gun/h. More details about its form for diatomic molecules can for example be found in Refs. [305, 306].
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electric field we use to control its dynamics:

H(H) = H™+W(5. (5.29)

In the dipolar approximation, the interaction between the molecule and the control field
E(?) is given by:

W (t) = —pE(1). (5.30)

Since we consider that the control pulse is polarized along the Z axis of the laboratory frame,

we can also write this as:

W(t)=—-uoE(t)coso, (5.31)

where (1 is the component of the dipole moment of the molecule along its internuclear axis and
0 is the angle between that axis and the direction of polarization of the control field.

5.2.1.2 Hamiltonian for two molecules

The time-independent Hamiltonian for the two-molecule system is simply the sum of the

two internal Hamiltonians Hﬁl and len and of their electric dipole-dipole interaction term Vgyq:

2 .
Ho=)_ H| +Vqq. (5.32)
i=1

The dipole-dipole interaction term takes the form [307]:

e -3t 1) (e 1)

Vad 73

(5.33)

where the intermolecular axis is assumed to coincide with Z and where 1y is the unit vector in

that direction.

As in the one-molecule case, the electronic and vibrational contributions to the internal
Hamiltonians Hlln are constant. However, since we add a static electric field along Z to differ-
entiate the energy levels of the two molecules, a Stark Hamiltonian HS’ must now be included in

the internal Hamiltonians Hi"n:
H} = HL + Hl + HS + HL. (5.34)
This new term takes the form:
. . 1 . 1 ;
H{=—-p'E'cosf; - o (E)*cos®0; — EaL(E‘)Z cos?0;, (5.35)

where E' is the value of the static electric field experienced by molecule i, while & and a are

its parallel and perpendicular polarizabilities, whose values were taken from Ref. [308].
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In the dipolar approximation, the interaction between the molecules and the control field

E(¢) we optimize is given by:

W (1) = —pu'E(r) + p?E(2), (5.36)

or, since the control pulse is polarized along the Z axis,

W(t) = —,ulE(t)cosBl +,qu(t) cos0s. (5.37)

Using this model, all calculations of the energy levels used in the following field optimiza-
tions were performed by Philippe Pellegrini during his postdoctoral research in the Laboratoire

de Chimie Physique.

5.2.1.3 Optimization of the microwave control field

In order to implement a logical operation acting on n qubits, each control field must guide
the population of the 2" hyperfine levels used in the quantum register from their 2" input values
to the 2" desired outputs:

E(1) target

lpr(t=0)) — I > (tr)), (5.38)

with k = 1,2,...2". The simultaneous optimization of these 2” transitions was achieved using
Multi-Target Optimal Control Theory, as described in Section 4.1.3.6 (p. 127). The time depen-
dent coupled equations were expressed in the interaction representation [309] in the basis set
of eigenstates of the field-free Hamiltonian Hy and were solved using the fourth-order Runge-
Kutta method [310].

However, unless an additional constraint is added, each state ends up with a different phase
e'x by the end of the control pulse. This is problematic as the relative phases of the states
involved in a quantum superposition must be kept equal, to avoid unwanted interferences ef-
fects [191,311]. This can be achieved by optimizing an additional transition, this time involving
the sum of all 2” input states and the corresponding 2" output states at once to ensure that their

phases stay equal [191]:

2! E(1) 2l target j
Y lprr=0)) == Y 1o (zp) e, (5.39)
k=1 k=1
where y is the phase.
Using these 2" + 1 equations, the microwave fields were optimized by Optimal Control The-

ory generalized to the multi-target case. The fidelity was computed as:

2241 2

target
P ; Prltpl g g (5.40)

where ¢ (t¢) is the wavefunction in state k at time ¢y and (/)tkarget(tf) is the target wavefunction

for that state. Field optimizations were pursued until the fidelity reached at least 99 %, as quan-
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tum computations require very high fidelity operations to limit the accumulation of errors. No
additional constraints on the fluence or the area of the field were imposed in order to ensure a

reasonably quick convergence to high fidelity.

5.2.2 Results
5.2.2.1 Intramolecular 2-qubit Grover algorithm

For the 2-qubit intramolecular version of Grover’s algorithm, we use a single *'K8'Rb
molecule in a magnetic field of 500 gauss. The 64 states of its first two rotational manifolds
were included in all computations presented here.

The four possible states |00),|01),]/10) and |11) of the 2-qubit register were associated to
states k = 4,7,10,13 (numbered in order of ascending energy) of the J = 0 rotational manifold
(see Table 5.5 and Fig. 5.3). These states were chosen because they are coupled through tran-
sitions involving states k = 36 and k = 41 of the J = 1 manifold. The |10) state was arbitrarily
chosen as target for the algorithm, but any other state could be selected instead by simply opti-
mizing another phase shift gate.

A control pulse was optimized separately for each of the three quantum gates of Grover’s
algorithm using OCT. The same initial field was chosen for each quantum gate: eight sine square
pulses of amplitude Ey = 1078 a.u. with frequencies corresponding to transitions from states
k =4,7,10,13 to states k = 36 and 41. The qubits are thus only coupled by transitions towards
two specific external states, but not by direct transitions.

After optimization, we reached fidelities of 99.90% for the Hadamard after 530 iterations,
99.71% for the phase shift gate after 750 iterations and 99.94% for the inversion about average
gate after 540 iterations. The corresponding fields and the population evolution of target state
|10) throughout the single iteration of Grover’s algorithm necessary to obtain the desired result

can be found in Fig. 5.4.

Table 5.5: Assignment of the logical states for the 2-qubit Grover algorithm implemented on a
single 'K®Rb molecule in a magnetic field of 500 gauss. The k states are numbered in the order
of increasing energy and their main constituent J, mj;, my,, my, is given.

[Q1Q2) k  |J,mj,my,my,)

|00) 4 10,0,-3/2,3/2)

|01) 7 10,0,-1/2,1/2)

[10) 10 10,0,1/2,-1/2)

[11) 13 10,0,3/2,-3/2)
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Figure 5.3: Hyperfine levels of the first J = 0 and J = 1 rotational manifolds of a ' K8 Rb molecule
exposed to a magnetic field of 500 gauss. The black squares represent the four levels on which
the four possible pure values of the 2-qubit register were encoded, while the black triangles
denote the levels with which they have strong transition dipole moments.
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Figure 5.4: Optimized fields (bottom) and evolution of the population in the target state |10)
(top) as a function of time for the first iteration of our theoretical implementation of the 2-qubit
Grover algorithm on a single ' K®’Rb molecule.
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5.2.2.2 Intramolecular 3-qubit Grover algorithm

Similarly, we implemented a 3-qubit intramolecular version of Grover’s algorithm on a single
41K87Rb molecule exposed to a magnetic field of 500 gauss, as in the 2-qubit case. This time,
23 = 8 states are needed to encode the three qubits: in addition to those used in the 2-qubit
case, states k = 30, 36, 41 and 47 were associated to the values [100),|101),[110),|111) of the
quantum register (Table 5.6 and Fig. 5.5). As in the 2-qubit case, the |010) state was arbitrarily

chosen as the target of the search algorithm.

Table 5.6: Assignment of the logical states for the 2-qubit Grover algorithm implemented on a
single ' K8’Rb molecule in a magnetic field of 500 gauss. The k states are numbered in the order
of increasing energy and their main constituent |/, my, my,, mp,) is given.

|Q1QZQ3> k |]v my, mll’m11>

|000) 4 10,0,-3/2,3/2)
|001) 7 10,0,-1/2,1/2)
|010) 10 10,0,1/2,-1/2)
[011) 13 10,0,3/2,-3/2)
|100) 30 1,-1,1/2,1/2)
[101) 36 11,0,-3/2,1/2)
[110) 41 11,-1,3/2,-1/2)
[111) 47 11,-1,-1/2,-1/2)

As in the previous case, the states are coupled by their transition to states k = 36 and 41. We
thus chose 16 sine square pulses with frequencies corresponding to the transitions between the
8 states of our basis and these two intermediary states as initial guess for the OCT algorithm. For
the three gates, fidelities superior to 99.9% were obtained after 1500 iterations of the optimiza-
tion algorithm. The three optimized pulses and the evolution of the population in the target

state |010) during the first iteration of Grover’s algorithm are shown in Fig. 5.6.
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Figure 5.6: Optimized fields (bottom) and evolution of the population in the target state |010)
(top) as a function of time for the first iteration of our theoretical implementation of the 3-qubit
Grover algorithm on a single 'K®’Rb molecule. The population reaches the expected value of
0.78125, as predicted in Table 5.4 (p. 168).
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5.2.2.3 Intermolecular 2-qubit Grover algorithm

Finally, we simulated the implementation of a 2-qubit version of Grover’s algorithm in hy-
perfine levels of two interacting 'K®Rb molecules. As explained in the description of the
model, the distance between the centers of mass of the two molecules is assumed to stay con-
stant at 100 nm. The two molecules are exposed to different magnetic and electric fields to
differentiate their energy levels and allow individual addressing: 500 gauss and 1 kV/cm for the
first one, 400 gauss and 0.8 kV/cm for the second.

The addition of a molecule in our model of course complicates the problem significantly:
even by limiting ourselves to the J = 0,1 rotational manifolds, which contain 64 states for each
molecules, we have a total of 642 = 4096 different states to consider for the two interacting
molecules. These states can be divided in three manifolds: one where both molecules are in
their lowest rotational manifold J = 0, one where one molecule is in J = 1 while the other is in
J =0, and one where both molecules are in J =1 (Fig. 5.7).

We assigned the |00) logical state of our qubit register to the lowest energy state of the sys-
tem, where both molecules are in their absolute lowest energy level. Because of the external
electric fields we impose, this state only couples to a few states in the second manifold, which
themselves only couple to a few states in the third manifold. The state |00) does not couple
directly to any state in the third manifold. The four logical states |00),]01),|10),|11) of our 2-
qubit register were assigned to the hyperfine states numbered (in order of ascending energy)
k =1 (first manifold), 1249,1537 (second manifold) and 3841 (third manifold) respectively (Ta-
ble 5.7).

Table 5.7: Assignment of the logical states for the 2-qubit Grover algorithm implemented on two
41K87Rb molecules in a magnetic field of 500 and 400 gauss respectively. The k states are num-
bered in the order of increasing energy and their main constituents J, my, my,, mp, are given.

2
1Q1Q2) K O, mP, mY,my @ 7@, mP, m, m?)

|00) 1 10,0,3/2,3/2) ®10,0,3/2,3/2)

[01) 1249 |1,0,3/2,3/2)®10,0,3/2,3/2)

[11) 1537 10,0,3/2,3/2)®11,0,3/2,3/2)

[11) 3841 11,0,3/2,-3/2)®]1,0,3/2,3/2)

Given the fact that a field optimization with 4096 states would require a huge amount of
computational resources, only those possessing a significant transition dipole moment with the
states used to encode the qubits were included in the calculations, for a total of 16 states (see
Fig. 5.7 for a complete vision of all 4096 states and of those used in our calculations).

We reached a fidelity of 99.995% for the Hadamard gate after 630 OCT iterations with a trial
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Figure 5.7: The energy levels of two *!K8’Rb molecules exposed to a magnetic field of 500 and
400 gauss, respectively. The black squares represent the 16 levels included in our calculations.

amplitude of 1072 a.u., of 99.74% for the phase shift after 7700 iterations and of 99.53% for the

inversion about average after 7600 iterations, with a trial amplitude of 1079 a.u. for both. The

resulting optimized fields and the corresponding evolution of the population in the target state

|10) is shown in Fig. 5.8.

Note that the population displays strong oscillations, especially during the inversion about

average pulse. A smoother evolution can be obtained by using lower field intensities, but the

number of iterations required to reach a good fidelity then rises significantly. Similarly, a shorter

duration could be chosen for the pulses at the cost of longer field optimization times.
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Figure 5.8: Optimized fields (bottom) and evolution of the population in the target state |10)
(top) as a function of time for our theoretical implementation of the 2-qubit Grover algorithm
on two interacting ' K”Rb molecules.

5.2.2.4 Discussion

The high fidelity of our optimized pulses was put to the test by simulating multiple succes-
sive iterations of the algorithm. The probability of measuring the target state as a function of
the number of iterations is shown in Fig. 5.9 and compared with the expected behavior in an
ideal case with 100% fidelities for all gates.

The good agreement between the ideal case and our simulations even after a relatively large
number of gate operations is granted by the high fidelities of the field we optimized. As ex-
pected, this agreement however breaks down for high number of iterations as the small errors
in each step gradually accumulate.

Note that the mixing between hyperfine states varies with the values of the external field,
with high intensities leading to a simplification of the hyperfine spectrum (i.e. lower transi-
tion probabilities between the states [312,313]). Conversely, high field intensities ensure a large
splitting between states, leading to easier addressing. A compromise such as the one presented
here must thus be found in order to preserve a strong state mixing to allow the implementation
of complex operations, while ensuring a sufficient splitting.

Also note that the general concept of implementing intermolecular operations on two
neighboring trapped molecule does not depend on the parameters used in the present simu-
lations: we chose an intermolecular distance of 100 nm to make the dipole-dipole interaction
very significant, and a sharp field gradient to ensure easy state addressing, but these values were

chosen out of numerical convenience and similar results can be obtained for other conditions.
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T T T
12 2-qub?t, theory - - - 3-qubit, theory i
®  2-qubit, 1 molecule ®  3-qubit, 1 molecule
A 2-qubit, 2 molecules

Target state probability

Iteration

Figure 5.9: Probability of measuring the target state as a function of the number of iteration
of the 2-qubit (blue) and 3-qubit (red) Grover algorithm. Lines: theoretical predictions (see
Table 5.4 p. 168), Squares: results of our simulations on one ' K8”Rb molecule, Triangles: results
of our simulations on two 'K8”Rb molecules.

However, several ameliorations could be brought to our calculations, that were chronologi-
cally the first field optimizations realized in this thesis. Additional constraints could for example
be used in the optimizations to minimize the area and the fluence of the control fields. Lower
field intensities may also help avoid the strong population oscillations observed for certain op-
erations. Additional calculations with modified parameters (such as different values of the mag-
netic and electric fields), or with the addition of “noise” to our optimized pulses, could also be

performed to test their robustness and their sensitivity to experimental conditions.
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CHAPTER

6

CONCLUSIONS AND PERSPECTIVES

In this work, we theoretically studied the static properties of small molecular systems, their
field-free photodissociation and radiative association dynamics, the control of their photodis-
sociation dynamics using laser pulses, and the potential application of laser control to the use
of molecules as quantum computers. Our calculations thus ranged from the fundamental, ab
initio description of molecular properties on the basis of the basic principles of quantum me-
chanics, up to the theoretical determination of control pulses susceptible to inform future ex-

periments.

Three diatomic species were studied:

- HeH™, a species that plays an important role in astrochemistry,

- CO?*, ametastable dication of interest in quantum control experiments,

— 41K87Rb, a promising polar molecule for molecular quantum computing schemes.

In a first step, we computed the ab initio data required to perform the subsequent dynam-
ical calculations. For HeH™, the calculations previously performed by Loreau er al. [2] were
expanded upon by computing more accurate potential energy curves for its three lowest 12+
states and for its two lowest 3X* states. For CO?*, the potential energy curves of the X 3I1 state
and of the 11 lowest 3~ states were computed, as well as the corresponding radial nonadia-
batic couplings and electric transition dipole moments. This constitutes the first detailed ab
initio study of the excited 32~ states of CO?*.

In a second step, we studied the photodissociation dynamics of both HeH" and CO?* using

this ab initio data. The partial photodissociation and radiative association cross sections from
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all vibrational levels of the a and b 3" states of HeH™ towards the higher n =2-3 3" and 311
states were determined, using an approach that allows the extraction of the photodissociation
cross sections and of the corresponding radiative association cross section from a dissociative
calculation. The effect of the vibrational dependence of the cross sections was found to be very
significant, and special care was taken to ensure the suppression of Gibbs oscillations near the
threshold energies of the photodissociation cross sections. Resonances and the rotational de-
pendence of the cross sections however had to be neglected in our calculations. Our results
were used to compute the corresponding photodissociation and radiative association for physi-
cal conditions typically met in relevant astrophysical environments, which had never been done
before for triplet states of HeH*. Although our results show that the density of HeH" in its triplet
states is likely to be low in astrophysical environments, it may influence the abundances of other
species. Additionally, the partial photodissociation cross sections from the v = 0 level of the X

31 state of CO?* through its 3~ channels were also determined.

Next, we computed laser pulses that enhance the photodissociation of the ground electronic
states HeH™ and CO?* through specific channels. Three kind of control fields were tested in our
simulations: simple Gaussian pulses, pulses computed using Local Control Theory and pulses
optimized using Optimal Control Theory. We more specifically focused on the introduction, in
the two latter approaches, of a new constraint that allows the minimization of the area of the
control field. Although our results show that this constraint is efficient in reducing the area of
the optimized fields, filtering the low-frequency components of their Fourier transform during
the optimization or after was found to more significantly reduce their final area, in the presently
studied cases. Our best results in terms of maximization of the objective and of minimization
of the area were obtained when using Optimal Control Theory with the Local Control pulse as
initial guess, both for HeH* and for CO?*.

Finally, we ran simulations for a potential application of such quantum control techniques:
the use of molecular systems as quantum computers. We more precisely theoretically imple-
mented 2- and 3-qubit versions of Grover’s quantum search algorithm on hyperfine states of
ultracold trapped *'K8 Rb molecules exposed to a static magnetic field. Although they are
likely not experimentally predictive, these calculations show that logical operations may be im-
plemented between qubits encoded in states of different molecules, interacting through their

dipole-dipole interaction.

In conclusion, although current trends in research thematics may appear to favor the de-
scription of still bigger and more complex molecular systems (often at the cost of rough approx-
imation), much research remains to be done even on small molecular systems: their theoretical
description is very far from trivial even today, as our calculations have shown. Computational
chemistry for small molecular systems therefore still has a bright future ahead of itself — espe-
cially since accurate ab initio data is essential to the accurate theoretical calculation of reaction

cross sections and quantum control laser pulses.

The laser control of chemical processes is a very promising field of research both theoreti-

cally and experimentally. However, as we have seen, theoretically optimized pulses are often not
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experimentally realistic. We have focused here on a specific aspect that may help bridge the gap
between theory and experiment, the need for zero-area pulses, but other factors need to care-
fully be taken into account to theoretically optimize experimentally usable pulses, such as their
spectral properties and their robustness against experimental noise. Close collaborations be-
tween theoreticians and experimentalists will surely play a crucial role in future developments
of this domain of research, which may eventually lead to the realization of quantum computers
capable of outperforming even the most powerful classical computers.

If efficient molecular quantum computing schemes are to become a reality, important pro-
gresses first need to be achieved. As illustrated here, the theoretical description of even small
systems can be difficult — and needs to be realized with a high degree of precision to be of use
in the theoretical optimization of control pulses. Although the laser control of molecular pro-
cesses has come a long way since its inception, both theoretically and experimentally, there
remains a lot of progress to be done, especially if the gap between theoretical predictions and
experimental implementations is to be bridged. It might however pave the way to revolution-
ary applications, including the use of trapped molecules as quantum computers — which might

themselves revolutionize the way we theoretically describe molecules.

Since this thesis was partly realized in France, it is only appropriate to end it with a quote

attributed to one of its kings:

“If we only cared about the completion of things, we would never undertake anything

noteworthy.”

— King Frangois I’ (1494 — 1547),

about the construction of the Chdteau de Chambord.

189



Chapter 6. Conclusions and perspectives

190



APPENDIX

A

ADDITIONAL INFORMATION

A.1 Properties of the nonadiabatic radial coupling matrices

In this section, we give mathematical proof of the properties of the nonadiabatic radial cou-
plings matrices F and G used in Section 1.4.3 (p. 35).

A.1.1 Antisymmetry

Let us first prove that Fy; = —Fjx. We know that the electronic wavefunctions are orthonor-

mal:

(wet | wil) =5 (A1)

Deriving this expression with respect to R for j # k leads to:

0 el el el
<£\I’j weh )+ (WS

6 *
el el el

Given the definition of the elements Fy; (Eq. 1.29, p. 38), this implies that:

a \Pel —
¥ )=0 (A2)

which amounts to:

a \yel —
R ¥i)=0. (A.3)

Fyj+Fjr =0, (A4)

and therefore that Fy; = —F.
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A.1.2 Relation between F and G

Let us now derive an element Fy; with respect to R:
0 el 0 el 0 el el el el
312 3w | 19 = Gt | | )+ (| 3 )
0 el el
= O—R‘I’k W)+ G (A.5)

J
Since the electronic wavefunctions \I";l form a complete set, we can write:

62
AR2

Sle Sl

0 0 0 0
<aR oR I oR ; ! L] orJ
0
;<aR kil Plor "/
— ZFlelj' (A.6)
1

Inserting this into Eq. A.5, we can write the general relationship between the F and G matrices:

0
G= F? +6_Rf (A.7)

A.1.3 Radial couplings as a function of the potential energy

Finally, let us demonstrate Eq. 1.33 (p. 39). We start from the fact that the electronic Hamil-
tonian H® is diagonal for the electronic wavefunctions ‘P?I:

(wit | 1| wel) =0, (A.8)
The derivative with respect to R yields:
6 \Ijel Hel \Pel + \Pel iHel \Pel + \I,el Hel i\ljel _ O (A 9)
OR k1oR J k oR /) 7 ‘

where we see appearing the elements Fj; and F; as well as the electronic energies E]e.l and Eil:

0
ES'Fji+ <\P‘,’j ﬁHEI \If§1> +ESF =0, (A.10)
Since Fji = —Fyj, we obtain the relation:
<\Ij 0 Hel “Pel>
OR
Fyj= s : (A.11)
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A.2 Area of the electric component of an electromagnetic wave

Note: The following demonstration was put forward by Prof. O. Atabek (Institut des Sciences

Moléculaire d’Orsay, Université Paris-Sud) [179].

The wave equation for the electric component E(r, f) of an electromagnetic wave is:

2

V2E@, N = 2
¢ 0r?

where c is the speed of light. Its solutions take the form:

E(r, 1), (A.12)

E(, ) =gwt-k-r), (A.13)

where k = w/c is the wave vector, w = 27V is the angular frequency, and the function g is a
monochromatic sinusoidal wave or any linear superposition of sine waves with different angu-
lar frequencies w [314]. Since we consider here the electric field associated to one or several
photons, these frequencies can take any value except 0 as that would imply that k = 0 and that
the wave does not propagate.

As a consequence, the integral of the field over time ffo‘f E(r, t)dt must be strictly equal to
zero. This can be understood intuitively as the integration of each individual sine wave corre-
sponding to a particular frequency would yield zero.

For a more rigorous demonstration, let us consider a time-dependent function f(¢) and its

Fourier Transform F(w):

(o= f F(w)e™'dw. (A.14)
Integrating over ¢ leads to:
+00 +00 .
f f(o) dt= f f F(w)e'" dw dt, (A.15)
—00 —00
where the integral over time in the right-hand side can be rewritten as:
+oo |
f e’ dr =216 (w). (A.16)
—00

Knowing that for any function a(b), f 6(b) a(b) db = a(0), Eq. A.15 becomes:

+o00
f f@) dt=2nF(w=0). (A.17)

In other words, the only non-zero contribution to the integral over time comes from the
w = 0, non-periodical part of the function. Since the frequency of the electric field associated
to the propagation of photons must be strictly different from zero, its area must therefore be

strictly equal to zero.
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APPENDICE

B

RESUME DE LA THESE EN FRANCAIS

Conformément a la loi francaise, cette annexe présente un résumé dans la langue de
Voltaire des recherches réalisées lors de ma thése. Dans un souci de concision, seuls les ré-
sultats principaux de ce travail seront présentés dans cette section : les détails théoriques et

méthodologiques peuvent étre trouvés (en anglais) dans les pages qui précedent.

B.1 Introduction et choix des systéemes étudiés

Le présent travail porte sur I’étude théorique des propriétés de petits systemes moléculaires
et sur le contrdle de leur dynamique a I'aide de champs lasers. 1l a été réalisé dans le cadre
d’une cotutelle internationale entre le Service de Chimie Quantique et Photophysique (CQP) de
I'Université Libre de Bruxelles et le Laboratoire de Chimie Physique (LCP) de 'Université Paris-
Sud, et se place dans la continuité de travaux réalisés dans les deux laboratoires : I'étude détail-
lée des propriétés du cation HeH" entreprise par Jérome Loreau [2-5] ainsi que les simulations
de dynamique quantique et de controle quantique du groupe ThéoSim du LCP [6-10].

Nous étudions plus précisément trois systemes : le cation hydrohélium HeH™, le dication

du monoxyde de carbone CO?* et la molécule polaire *' K" Rb.

B.1.1 Le cation hydrohélium HeH"

HeH" est un systéme de grand intérét en astrochimie : composé d’hydrogene et d’hélium,
les deux éléments les plus abondants de 'univers, on pense qu’il est la premiére espece
moléculaire qui s’est formée dans I'histoire de I'univers, par association radiative de H* et

He [25-27]. Des prédictions théoriques indiquent que HeH™" devrait avoir, aujourd’hui encore,
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une abondance fractionnelle suffisamment grande pour étre observable dans certaines régions
de I'espace [28], notamment dans certaines nébuleuses [25, 29, 30], certaines supernove [31]
et dans certaines étoiles pauvres en métaux [32] (en particulier les naines blanches riches en
hélium [33]). A I’heure actuelle, aucune des tentatives de détection de HeH' dans I'espace n'a
toutefois été concluante [34, 35].

Son état a 3™ est toutefois métastable (avec un temps de vie radiatif de 149 s pour son
niveau rovibrationel le plus bas), ce qui suggére que HeH" pourrait peut-étre étre détecté dans
cet état dans des environnements astrophysiques ou le taux de collision est tres bas [3]. Dans
cette these, nous avons donc poursuivi le travail commencé par Loreau ef al. en étudiant
'astrochimie de HeH* dans ses deux premiers états triplets. Nous avons tout d’abord calculé
les sections efficaces caractérisant la destruction de ces deux états par photodissociation et leur
formation par association radiative. Nous avons ensuite optimisé théoriquement des champs
laser permettant de guider la photodissociation de HeH* vers des fragments spécifiques, dans
la continuité du travail entrepris par Bomble et al. [43] : la dynamique de photodissociation de
HeH™ estloin d’étre triviale en raison du grand role qu'y jouent les couplages non-adiabatiques,

ce qui en fait un bon cas d’étude pour les méthodes de controle quantique.

B.1.2 Le dication CO%*

CO?* est un autre ion diatomique qui suscite l'intérét dans plusieurs domaines de
recherche : premier dication détecté expérimentalement [44], il s’agit a la fois d'une espece
d’intérét en astrochimie [57] et dans le domaine du controle quantique [102]. Le niveau vi-
brationnel le plus bas de son état électronique fondamental X 3IT a en effet un temps de vie
significativement plus long (de 'ordre de plusieurs secondes au moins [49]) que ses niveaux
vibrationnels excités, ce qui signifie qu’il est relativement aisé d’obtenir du CO>* pur vibra-
tionnellement.

Pour cette raison, le groupe d’expérimentateurs du Prof. Urbain (Université catholique de
Louvain), qui a précédemment étudié la formation de CO?* par impact d’électrons sur CO™ [50],
souhaite réaliser des expériences de contrdle laser de la photodissociation de CO?*. Dans cette
optique, nous avons déterminé théoriquement des champs de controle laser permettant de
guider sa photodissociation a travers ses canaux >X~ de facon a favoriser la formation des frag-
ments C>* + O plutot que C* + OT. Pour y parvenir, nous avons tout d’abord calculé les données

ab initio nécessaires, qui n'avaient encore jamais été déterminées auparavant.

B.1.3 Lamolécule polaire *'K®"Rb

Parmi les nombreux systémes moléculaires considérés comme supports potentiels pour
I'information dans le domaine de “l'informatique quantique moléculaire”, les molécules di-
atomiques polaires font partie des candidats les plus prometteurs grace a leur long temps de
cohérence et leur forte interaction dipéle-dipdle [70].

Les molécules de *'K®Rb présentent plus particulierement 1'avantage de pouvoir étre

obtenues dans leur état d’énergie le plus bas et piégées [71-74], ce qui en fait d’excellentes can-
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didates pour la réalisation d’expériences de controle de facon générale et dans le domaine de
I'informatique quantique en particulier.

Dans cette thése, nous simulons I'implémentation de I'algorithme quantique de Grover sur
des qubits encodés dans des états hyperfins de molécules de ' K8 Rb piégées. Nous mettons
plus particuliéerement I'accent sur la réalisation d’opérations logiques intermoléculaires, c’est-
a-dire agissant sur des qubits encodés sur deux molécules différentes, qui interagissent 'une
avec l'autre par le biais de leur moment dipolaire (ce qui ouvre des perspectives intéressantes

en terme d’extensibilité).

B.2 Calculs ab initio

B.2.1 Calculs ab initio pour HeH*

Tous les calculs de dynamique de réaction de HeH* présentés dans ce travail ont été réalisés
avec les courbes d’énergie potentielle, les couplages non-adiabatiques radiaux et les moments
dipolaires électriques calculés par Loreau et al. [2]. Les figures B.1 et B.2 montrent les courbes

d’énergie potentielle adiabatiques et diabatiques pour les états singulets et triplets de HeH™,

respectivement.
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Figure B.1: Courbes d’énergie potentielle adiabatiques (a gauche) et diabatiques (a droite) des
états n=1-3 2% de HeH". Lignes pleines : états qui se dissocient en He + H", lignes pointillées :
états qui se dissocient en He* + H.

Puisque notre objectif était d’étudier la dynamique de photodissociation des états X !X,

a3zt et b3X* de HeH™ ; ce qui nécessite la détermination de leurs fonctions d’onde rovibra-
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Figure B.2: Courbes d’énergie potentielle adiabatiques (a gauche) et diabatiques (a droite) des
états n = 1-3 32" (en bleu) et 3I1 (en rouge) de HeH™. Lignes pleines : états qui se dissocient en
He + H*, lignes pointillées : états qui se dissocient en He™ + H.

tionelles avec haute précision, nous avons effectué une série de calculs supplémentaires des
courbes d’énergie potentielle de ses états X, A, B X" et a, b 3Z" durant notre mémoire de Mas-
ter en utilisant les mémes parametres que Loreau et al., en dehors de la base, qui a été variée
de AVTZ a AV6Z. Ces séries de résultats dans des bases de tailles croissantes ont ensuite été ex-
trapolées a base complete (CBS). Etant donné 'excellent accord entre les courbes CBS et celles
obtenues par Loreau et al, ces dernieres ont été utilisées dans tous nos calculs de dynamique,
mais ce sont les courbes CBS qui ont été employées pour calculer les énergies des niveaux rovi-
brationnels des états X, a et b ainsi que leurs fonctions d’onde (représentées sur la figure B.3
pour I'état b 3xF).

198



B.2. Calculs ab initio

-2.170 , . ,
-2.175
T -2.180
o i _
< ] ]
e
= .2.185]
Q
3 ] |
2 ] |
L 2190 .
o
< ] |
@ ] v=0 ]
(@] —
5 -2.1954 v=5 -
c =
L ] v=10 ]
1 v=15 E
-2.200 | v=20| o
-2.205 . , . , . , . , .
0 10 20 30 40 50

Distance internucléaire (a,)

Figure B.3: Courbe d’énergie potentielle, niveaux vibrationnels et fonctions d’onde de I'état b
33+ de HeH* pour J = 0.

B.2.2 Calculs ab initio pour CO**

Notre but dans ce travail n’était pas d’améliorer la précision des courbes de potentiel adi-
abatiques calculées précédemment dans d’autres études [62-64, 67, 69, 98, 104-106], mais de
calculer les courbes d’énergie potentielle, les couplages non-adiabatiques radiaux ainsi que les
dipoles permanents et de transition de I'état fondamental X 311 et des onze premiers états 33~
de CO**.

Cette tache a été rendue difficile par de nombreux probléemes de convergence, qui nous
ont poussé a choisir un tres petit pas spatial AR entre nos différents calculs (jusqu’a 0.001 ag
dans certaines régions) afin de faciliter leur convergence. Ceci nous a permis par la suite de
corriger plus facilement le signe des dipoles de transition et des couplages non-adiabatiques
radiaux entre nos états, grandeurs qui sont obtenues au signe pres dans la suite MOLPRO [84].
Toutes ces données ont été calculées dans la base AVTZ avec un espace actif (6 a;, 2 by, 2 by)
pour des distances internucléaires allant de R = 1.5 a 100 agy. Des calculs dans les bases AVQZ,
AV5Z et AV6Z ont également été réalisés et, bien que les énergies absolues des états varient
d'une base a l'autre (jusqu'a = 0.010 hartree), les différences d’énergie entre les états varient
comparativement peu (= 0.003 hartree au maximum).

Les signes des 78 couplages non-adiabatiques radiaux et des 91 moments dipolaires de tran-
sition entre les états étudiés ont été corrigés manuellement. Les courbes d’énergie potentielle
et les dipoles de transition ont ensuite été diabatisés : la figure B.4 montre les courbes d’énergie

potentielle des états X~ avant et aprés diabatisation, tandis que la figure B.5 montre la courbe
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d’énergie potentielle de I'état fondamental X 3II et la fonction d’onde de son niveau v, J = 0.
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Figure B.4: Courbes d’énergie potentielle adiabatiques (gauche) et diabatiques (droite) des 11
premiers états 3~ de CO?*. Lignes pleines : états qui se dissocient en C* + O™, lignes pointil-
lées : états qui se dissocient en C>* + O.
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Figure B.5: Courbe d’énergie potentielle de I'état X 31 de CO** et fonction d’onde de son niveau
v=0,/=0.
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B.3 Dynamique libre

Nous avons ensuite utilisé ces données ab initio afin de décrire la dynamique de photodis-
sociation de HeH™ et de CO?* ainsi que la formation de HeH* par association radiative. Nous
avons pour cela utilisé une approche dépendante du temps basée sur la propagation de paquets

d’ondes.

B.3.1 Dynamique libre pour HeH*

Nous avons déterminé les sections efficaces de photodissociation des états a et b X" de
HeH™ vers les états 3Z* et 311 n =2-3 supérieurs ainsi que les sections efficaces d’association
radiative correspondantes, en utilisant une méthode dépendante du temps basée sur la prop-
agation de paquets d’ondes. Les sections efficaces de photodissociation ont été calculées pour
chaque niveau vibrationnel initial possible, en combinant deux méthodes de calcul différentes :
la premiére se base sur la fonction d’autocorrélation du paquet d’ondes afin de déterminer les
sections totales, tandis que la seconde se base sur la valeur du paquet d’ondes a une certaine
distance internucléaire R, afin de déterminer les sections partielles. Nous avons montré que
ces deux méthodes peuvent étre utilisées de facon complémentaire afin de corriger les oscilla-
tions de Gibbs [139] qui apparaissent dans les sections partielles lorsqu’elles ont une contribu-
tion non nulle a proximité de I'énergie de seuil. Les résonances ont toutefois dii étre négligées
en raison des temps de calcul considérables qui auraient été nécessaires a leur détermination
pour chacun des niveaux rovibrationnels initiaux.

Les sections efficaces d’association radiative ont ensuite été déterminées sur base des sec-
tions efficaces de photodissociation correspondantes. Enfin, ces résultats ont été utilisés pour
estimer les constantes de vitesse de photodissociation et d’association radiative dans les condi-
tions typiquement rencontrées dans les environnements astrophysiques ot HeH" devrait pou-
voir étre détecté. Nos résultats indiquent que I'abondance fractionnelle de HeH* dans des états
triplets doit y étre beaucoup plus petite que celle de HeH* dans des états singulets, tout en étant

toutefois suffisante pour influencer les abondances d’autres espéeces chimiques.
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Section efficace de photodissociation totale (cm?)

Energie (eV)

Figure B.6: Sections efficaces de photodissociation de différents niveaux vibrationnels de 1'état
b3z* de HeH" vers les canaux 3X* supérieurs.
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Figure B.7: Constantes de vitesse d’association radiative vers I'état b 32 de HeH* depuis ses
canaux X" n=2-3.

202



B.4. Controle laser de réactions de photodissociation

B.3.2 Dynamique libre pour CO**

Les sections efficaces partielles de photodissociation du niveau v” = 0 de I'état X 3II de
CO?* vers les canaux 3~ ont également été calculées. La figure B.8 montre les sections efficaces
partielles que nous avons obtenues. La section efficace de photodissociation vers le neuvieme
état 32, le premier qui se dissocie en C?>* + O plutét qu'en C* + O™, est trés petite et ne domine
dans aucun domaine d’énergie, d’ou1 la nécessité d’utiliser des méthodes de contrdle quantique

afin de calculer des champs laser permettant de favoriser la dissociation dans ce canal.
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Figure B.8: Sections efficaces de photodissociation partielles du niveau v = 0 de I'état X 3TI
de CO?* vers les 11 premiers canaux >2~. La nomenclature des états suit celle donnée dans le
tableau 2.6 (p. 69).

B.4 Controle laser de réactions de photodissociation

Apreés avoir décrit la dynamique de photodissociation libre de HeH* et CO?*, nous sommes
allés un cran plus loin en calculant des champs laser guidant la dynamique de photodissoci-
ation vers des canaux spécifiques, de facon 2 favoriser leur dissociation en He™ + H et C** +
O plutot qu'en He + H™ et en C* + O*. Pour y parvenir, nous avons utilisé deux techniques
d’optimisation des champs de contrdle : la théorie du contréle optimal (OCT) [181, 184] et
une variante du contréle local (LCT) [166-168] basée sur les opérateurs de Moller (développée
précédemment lors d’'une collaboration entre le Prof. Meier du laboratoire LCAR-IRSAMC de

I'Université Paul Sabatier et le Laboratoire de Chimie Physique de I'Université Paris-Sud [43]).
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B.4.1 Contrainte sur l'aire

Les champs lasers de controle optimisés théoriquement a 1'aide de ces méthodes ne sont
cependant pas toujours expérimentalement réalistes. L'un de ceux déterminés par Bomble et
al. dans le premier article sur le contrdle de la photodissociation de HeH™ a par exemple une
aire totale non nulle, comme illustré dans la figure B.9 (courbe noire).

Laire totale du champ électrique associé a une onde électromagnétique devrait pourtant
en principe étre nulle’, p. 193), ce qui a motivé les Prof. Sugny (Laboratoire Interdisciplinaire
Carnot de Bourgogne, Université de Bourgogne) et Atabek (Institut des Sciences Moléculaires
d’Orsay, Université Paris-Sud) a proposer une contrainte, pondérée par un parametre v, per-
mettant de minimiser 1’aire des champs de contréle lors de leur optimisation par la théorie du
contrdle local ou la théorie du contréle optimal [180].

Nous présentons dans ce travail les premiers résultats obtenus en implémentant cette con-
trainte en contréle local, ainsi que nos résultats obtenus en I'implémentant en contrdle opti-
mal. Nous combinons a cela une autre approche de la minimisation de l'aire de nos champs
apres optimisation, qui consiste a filtrer les basses fréquences dans leur transformée de Fourier
(comme illustré sur la figure B.9), qui correspondent a une contribution non-oscillante dite
“Stark”.
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. —— Champ de départ iy
0.04 Contribution Stark T
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-0.06 " 1 " " 1 " 1 " 1 "
0.06 . , . , . , . , , , ,
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0.02

0.00 +

-0.02
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Figure B.9: Le champ de controle de la photodissociation de HeH* optimisé par Bomble et al.
avec les parametres A = 4.2, v = 0 (en haut, courbe noire) peut étre séparé en une contribu-
tion “Stark” (en haut, courbe noir) et une partie oscillante (en bas, courbe bleue) en filtrant sa
transformée de Fourier.

fUne démonstration proposée par le Prof. Atabek est donnée (en anglais) au début de 'annexe A.2.
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B.4.2 Controle de la photodissociation de HeH™"

Le tableau B.1 montre les meilleurs résultats que nous avons obtenus avec différents types
d’impulsions laser: les champs LCT obtenus avec les paramétres A = 4.2, v=0et v = 0.10, des
champs gaussiens dont la fréquence correspond a des transitions résonnantes (avec soit une
valeur maximale du champ Ep. () imposée, soit une fluence Fy imposée), et les champs opti-
misés par OCT avec une fluence imposée fixe Fy = 0.06 u.a. obtenus en utilisant soit une impul-
sion gaussienne, soit le champ LCT a v = 0 comme champ de départ (figure B.10). Les résultats

sont présentés pour les champs avant et apres filtrage des composantes “Stark”.
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Figure B.10: Champs optimisés a I’aide la théorie du controle optimale pour le controle de la
photodissociation de HeH*, obtenus en utilisant le champ LCT comme point de départ, avant
(en haut) et apres (en bas) filtrage des composantes “Stark”.
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Tableau B.1: Propriétés des meilleurs champs optimisés pour le contrdle de la photodissociation de HeH™. La durée ty, la valeur maximale du champ

électrique Enax () etla fluence F sont toutes exprimées en unités atomiques.

Champ Objectif Ly Enax()  Sélectivité Anorm F Fig.

LCT,v=0 855% 1000 0.068 1.067 6.39x107% 0.102 4.6, p.137
LCT v =0, sans “Stark” 4.48% 1000 0.047 1.243 -3.59x107* 0.049 4.6,p.137
LCT,v=0.10 4.75% 1000 0.024 0.797 -4.30x107* 0.045 4.6,p.137
LCT v =0.10, sans “Stark” 341% 1000 0.022 0.563 1.32x107°  0.058  4.6,p.137
Gaussiennex_.g, Emax(#)=0.05 237% 1638.4  0.050 0.853 0 0.376 4.9, p. 140
Gaussiennex_.g, F=0.06 13.77% 1638.4 0.017 0.722 0 0.060 4.9, p. 140
OCT, Champ initial = Gaussiennex_.g, Fy=0.06 16.48% 1638.4  0.049 1.067 5.94x 1072  0.060 4.10, p. 142
OCT, Champ initial = Gaussienne_. g, Fy=0.06, sans “Stark” 12.35% 1638.4 0.051 1.119 3.14x107Y 0.058 4.10, p- 142
OCT, Champ initial = LCT,~¢, v = 0.20, Fy=0.06 21.54% 1638.4 0.039 8.894 2.19x107™*  0.060 4.11,p. 143
OCT, Champ initial = LCT, -, v = 0.20, F»=0.06, sans “Stark” 20.24% 1638.4  0.039 5.952 235x 10717 0.060 4.11,p.143
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B.4.3 Controle de la photodissociation de CO?**

Le tableau B.2 montre les meilleurs résultats que nous avons obtenus avec différents types
d’impulsions laser: les champs LCT obtenus avec les parametres A = 7.5 et v = 0, un champ
gaussien dont la fréquence correspond a une transition résonnante vers 1’état-cible, le champ
LCT modifié afin de servir de point de départ a I’algorithme de contréle optimal et le champ op-
timisé par OCT avec le parametre o = 200. Les champs obtenus ont une fluence plus élevée que

pour HeH™ en raison de la valeur plus petite des moments dipolaires de transition impliqués.

0.06 T T T T T T T T T T T T T T T T T T T
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Figure B.11: En haut : champ optimisé a I'aide la théorie du contrdle optimale avec ay = 200
pour le controle de la photodissociation de CO?*, obtenu en utilisant le champ LCT comme
point de départ. En bas : populations des états diabatiques en fonction du temps.
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Tableau B.2: Propriétés des meilleurs champs optimisés pour le contréle de la photodissociation de CO?*. La durée tf, la valeur maximale du champ
électrique Emax (1) et la fluence F sont toutes exprimées en unités atomiques.

Champ Objectif tr Enax(t)  Sélectivité Anorm F Fig.

ILCTA=75v=0 16.49 % 6500 0.032 0.797 7.92x107° 0.627 4.14,p.148
Gaussianx_.g, Emax(#)=0.05 1.30% 2000 0.050 0.025 0 0.627 4.15,p. 150
LCT, raccourci, avec enveloppe 9.01% 2000 0.032 0.799 8.27x107% 0.347 4.16,p. 151
OCT, Champ initial = LCT raccourci, ag = 200 19.82% 2000 0.050 0.811 0 0.905 4.17,p. 152
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B.4.4 Conclusions: controle de réactions de photodissociation

Nous avons tiré les conclusions suivantes de nos calculs sur HeH' and CO?*:

— Bien que des impulsions gaussiennes puissent, de prime abord, sembler parfois mener
a des objectifs plus élevés que des impulsions laser optimisées par LCT, la comparaison
d’impulsions de méme fluence montrent que les gaussiennes sont beaucoup moins effi-
caces. De plus, elles ménent a des sélectivités relativement basses dans des systemes ol la
dynamique est fortement influencée par des couplages non-adiabatiques, comme HeH*
et CO**.

— La contrainte sur I'aire est efficace, que ce soit en controle local ou en contrdle optimal,
mais trouver la valeur du parametre v qui meéne a la fois a une aire tres petite et a un
objectif final raisonnable nécessite plusieurs calculs. Dans les cas étudiés ici, filtrer les
composantes a basse fréquence de nos champs meéne déja a une diminution significative

de leur aire totale.

— Lalgorithme de contrble optimal mene a des impulsions beaucoup plus efficaces quand
les champs optimisés par la théorie du contrdle local sont utilisés comme point de départ

plutdt que de simples impulsions gaussiennes.

— Bien que les champs obtenus en utilisant la théorie du controéle local ménent a des objec-
tifs moins élevés que ceux obtenus en utilisant la théorie du controle optimal, leur spectre
est beaucoup plus simple, ce qui est susceptible de simplifier leur implémentation expéri-

mentale.

Une meilleur sélectivité entre les différents canaux de photodissociation pourrait certaine-
ment étre obtenue en utilisant des contraintes supplémentaires de facon a pénaliser ou a inter-

dire le transfert de population vers certains états [197,198].

B.5 Calcul quantique moléculaire

Enfin, nous nous sommes intéressés a I'une des applications potentielles des méthodes de
controle laser : I'utilisation de molécules comme “ordinateurs quantiques”. Différentes straté-
gies ont en effet été imaginées au cours des dernieres années pour tirer parti des propriétés
quantiques d’objets microscopiques, comme les molécules, afin d’effectuer certains calculs
plus rapidement qu’avec n'importe quel ordinateur classique.

Notre objectif dans ce travail n’est pas de donner une stratégie fonctionnelle pour permet-
tre l'utilisation de molécules comme ordinateurs quantiques capables de manipuler un grand
nombre de bits quantiques (“qubits”), mais d’explorer une possibilité de solution a certains
des obstacles qui doivent d’abord étre surmontés : le probleme de la décohérence (la perte
de l'information quantique sous l'effet de I'interaction avec I’environnement) et le probleme de

I'extensibilité (la difficulté d’encoder un grand nombre de qubits dans un systeme quantique et
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de les manipuler). Nous étudions plus précisément, a I'aide d'un modele simplifié, la possibil-
ité d'implémenter des opérations logiques intermoléculaires, c’est-a-dire sur des qubits encodés

dans des états d’énergie de molécules différentes qui interagissent les unes avec les autres.

B.5.1 Modéle utilisé

Notre modele s’inspire de celui proposé par le Prof. DeMille [70] et consiste a encoder les
qubits dans les états hyperfins de molécules diatomiques polaires piégées “communiquant” par
le biais de leur interaction dip6le-dipodle. Ces molécules présentent en effet de nombreux avan-
tages : elles peuvent étre créées a trés basse température et piégées, leur interaction dipole-
dipdle est particulierement forte, et leurs états hyperfins ont a la fois un temps de décohérence
relativement long et une structure suffisamment complexe pour permettre 'encodage d'un
grand nombre de qubits [70,291, 299].

Dans notre modele, les molécules de ' K®“Rb sont supposées piégées dans un réseau op-
tique : nous avons fait I'approximation qu’elles sont immobiles dans I'espace (avec une dis-
tance de 100 nm entre leurs centres de masse), et alignées sur I'axe intermoléculaire Z. Un
champ magnétique intense est utilisé pour provoquer le splitting des états hyperfins. De plus,
un champ électrique avec un gradient le long de I’axe de piégeage permet I’adressage individuel
de chacune des molécules [70].

Les molécules se trouvent au départ dans leur niveau d’énergie le plus bas (électronique,
vibrationnel, rotationnel et hyperfin) et restent tout au long du calcul dans les deux niveaux
rotationnels les plus bas du niveau vibrationnel v = 0 de leur état électronique fondamental X

13", Les autres niveaux d’énergie des molécules n’ont pas été pris en compte dans nos calculs.

B.5.2 Implémentations théoriques de I'algorithme de Grover

ATaide de ce modele, nous avons implémenté théoriquement une version a 2 et a 3 qubits
de l'algorithme quantique de recherche de Grover, qui permet de trouver un élément précis
dans une base de données désordonnée qui en contient N en un nombre d’opérations propor-
tionnel a /N (plutdt qu'a N/2, comme le ferait le plus efficace des algorithmes classiques). Les
opérations logiques successives qui composent l'algorithme sont réalisées a 'aide de champs
lasers optimisés par la théorie du controle optimal multicible [190] afin de réaliser les transferts
de population appropriés entre les états dans lesquels les qubits sont encodés. Les optimisa-
tions ont été menées pendant plusieurs centaines d’itérations, jusqu’'a ce que la fidélité des
champs de controle atteigne plus de 99 %.

Trois versions de l'algorithme de Grover ont été simulées : une version a 2 et une version a
3 qubits en encodant ceux-ci dans les états hyperfins d'une méme molécule de 41K87RDY, et une
version a 2 qubits en encodant ceux-ci dans les états hyperfins de deux molécules de *' K8 Rb
voisines interagissant via leurs dipdles permanents. Les figures B.12 et B.13 montrent respec-
tivement 'encodage choisi pour les qubits et les champs de contréle que nous avons optimisés

dans ce dernier cas. La fidélité tres élevée de nos champs de contrble permet la réalisation de
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plusieurs itérations successives de 1’algorithme sans perte significative de population dans les

états-cibles.
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Figure B.12: Niveaux d’énergie de deux molécules de *! K8 Rb exposées 2 un champ magnétique
de 500 et 400 gauss, respectivement. Les carrés noirs représentent les seize états inclus dans nos
calculs.

Nos résultats indiquent que la réalisation d’opérations logiques conditionnelles inter-
moléculaires est possible, ce qui ouvre des perspectives intéressantes en terme d’extensibilité :
plutdét que d’encoder un nombre important de qubits sur une seule molécule, il pourrait étre
intéressant d’utiliser plusieurs molécules en interaction, portant chacune un petit nombre de
qubits [9].

Il faudrait toutefois vérifier que ces résultats se confirment dans des modéles plus fideles
a la réalité. De plus, nos champs optimisés (chronologiquement, les premiers calculés dans le
cadre de cette thése) induisent des oscillations importantes des populations et pourraient étre
améliorés de différentes facons, par exemple en ajoutant une contrainte sur leur aire et sur leur

fluence.
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Figure B.13: Champs optimisés (en bas) et évolution de la population dans I'état-cible |10) (en
haut) en fonction du temps pour notre implémentation de I'algorithme de Grover a deux qubits
dans les états hyperfins de deux molécules de ' K8’Rb en interaction.

B.6 Conclusions

Dans ce travail, nous avons étudié théoriquement les propriétés statiques de systémes mo-
léculaires diatomiques, leur dynamique de photodissociation et d’association radiative, le con-
trole de leur photodissociation a I’aide de champs lasers, et ’application potentielle des méth-
odes de controle quantique a la réalisation d’ordinateurs quantiques moléculaires.

Des progres important doivent toutefois encore étre réalisés avant que des ordinateurs
quantiques moléculaire capables de surpasser nos ordinateurs classiques ne puissent étre créés.
Comme l'illustre ce travail, la description théorique de petites molécules n’est pas un probleme
trivial, surtout lorsqu’elle doit étre réalisée avec une haute précision (condition essentielle a
I'optimisation théorique de champs de contréle fiables). De plus, bien que le controle laser de
processus chimiques ait beaucoup évolué depuis ses débuts, des progres importants doivent
encore étre réalisés afin de combler I’écart qui existe souvent entre les prédictions théoriques et
les réalisations expérimentales.

De tels progres ouvriraient toutefois la voie a des applications révolutionnaires, telles que
I'utilisation de molécules comme ordinateurs quantiques — qui pourraient a leur tour révolu-

tionner la facon dont nous décrivons théoriquement les molécules.
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